
Improving Automated Controversy Detection on the Web

Myungha Jang and James Allan
Center for Intelligent Information Retrieval

College of Information and Computer Sciences
University of Massachusetts Amherst
{mhjang, allan}@cs.umass.edu

ABSTRACT

Automatically detecting controversy on the Web is a useful
capability for a search engine to help users review web con-
tent with a more balanced and critical view. The current
state-of-the art approach is to find K-Nearest- Neighbors in
Wikipedia to the document query, and to aggregate their
controversy scores that are automatically computed from
the Wikipedia edit-history features.

In this paper, we discover two major weakness in the prior
work and propose modifications. First, the generated single
query from document to find KNNWikipages easily becomes
ambiguous. Thus, we propose to generate multiple queries
from smaller but more topically coherent paragraph of the
document. Second, the automatically computed controversy
scores of Wikipedia articles that depend on “edit war” fea-
tures have a drawback that without an edit history, there can
be no edit wars. To infer more reliable controversy scores
for articles with little edit history, we smooth the original
score from the scores of the neighbors with more established
edit history. We show that the modified framework is im-
proved by up to 5% for binary controversy classification in
a publicly available dataset.

1. INTRODUCTION
The Web is an excellent source for obtaining accurate and

useful information for a huge number of topics, but it is also
an excellent source for obtaining misguided, untrustworthy
and biased information. To help users review webpage con-
tents with a more balanced and critical view, alerting users
that the topic of a webpage is controversial will be a useful
feature for a search engine.
Dori-Hacohen and Allan [4] proposed a framework for mak-

ing binary classification on general webpage, whether the
webpage presents a perspective on a controversial topic or
not. Their framework consists of four steps:

1. Matching k-NN Wikipages: When a webpage is
given as an input, they find k nearest-neighbor Wikipages
by generating a query from the 10 most frequent terms
in the document.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17 - 21, 2016, Pisa, Italy

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2914764

2. Computing Controversy Score on Wikipages:
From each of the k Wikipage, they automatically ex-
tracted three controversy scores: C score [2], M score
[10], and D score [4].

3. Aggregate: They aggregated the three types of k
scores using average or max operators.

4. Vote and Classify: They apply a voting scheme to
turn the aggregated scores into a final binary decision,
controversial or non-controversial.

While examining the performance of the current frame-
work, we identified two major weaknesses. First, generating
a single query from a document in Step 1 has issues. As
documents almost always contain multiple sub-topics, the
generated query contains an unknown mixture of different
sub-topics. This makes the query’s intent less clear, as it
targets many sub-topics at the same time and in unknown
balance. It is also unlikely that all sub-topics are covered in
the query – or covered appropriately – because keywords are
extracted from a bag-of-words, which does not model the ex-
istence of sub-topics as it is. As an alternative, we propose a
text-segmentation based query generation approach named
tilequery. We first segment the document into multiple
tiles, where each tile contains fewer sub-topics than the doc-
ument, ideally one sub-topic per tile. We generate a query
from each tile and then aggregate the ranked lists obtained
from the tiles’ queries. This can be viewed as a “divide-and-
conquer” approach for document query generation.
Another issue is that the Wikipedia controversy scores de-

pend on “edit-war” features, evidence of multiple editors
exchanging opposing opinions. However, the controversy
level is naturally underestimated on specific and sub-topical
Wikipages whose topical disputes have often been delegated
to other Wikipages of the broader topic. In other words, not
having the “edit-war” does not necessarily mean that there
was no war in this topic, but that the war has been happen-
ing somewhere else instead. This phenomenon causes the
algorithm to easily make false negative errors (i.e., classify-
ing “controversial” as “non-controversial”).
We next provide details of the modified query genera-

tion approach and how we address the problem of missing
or underestimated controversy scores using smoothing from
neighbors. We then carry out an evaluation using 303 non-
Wikipages as starting points and show the impact of our
modifications to the framework on classification accuracy.
We show that gains come from both changes but that cor-
recting controversy scores has a greater impact, yielding 5%
improvements in classification accuracy over the state-of-the
art performance.

2. RELATED WORK
To the best of our knowledge, Dori-Hacohen and Allan

were the first team to extend controversy detection to gen-
eral open-domain web-pages [4]. However, many efforts have
been made to understand and estimate controversy in Wiki-
pedia. As Wikipedia contains manually tagged controver-
sial articles by editors, machine-learning based methods ap-
proaches were trained to learn them. To estimate the level
of controversy in Wikipages, information extracted from the
edit-history, such as revision count, number of unique edi-
tors, number of reverts, the number of editors participating
in the edit-war, and their reputations have been exploited [6,
10]. Sepehri Rad and Barbosa surveyed five established con-
troversy detection algorithms on Wikipedia and compared
their performances [8].
Outside of Wikipedia, controversy detection has also been

studied within Twitter [7] or news corpus [1], focusing on po-
litical domain. Wang and Cardie recently studied online dis-
pute detection using sentiment-analysis based method trained
from controversial corpus in Wikiepdia [9]. However, as in
Wikipedia, this method requires evidence of explicit disputes
between two people, which is not applicable to general web-
pages.

3. MODIFIED FRAMEWORK
Here we provide details of the two modifications that we

propose to the existing framework.

3.1 TileQuery Generation
Document Segmentation We first use the block com-

parison algorithm described by the TextTiling technique [5].
The block comparison method defines as block with a few
sentences, and computes a lexical similarity score for every
gap between two blocks. When the similarity score dramat-
ically changes at a gap, we assume that is where a sub-topic
shift occurs and create a tile of blocks.
Query Generation Once we create tiles from a document

using TextTiling, we generate a query from each tile. There
are often some tiles that are hard to understand its meaning
without the context of the full text. Therefore, adding the
global context helps clarify the topic of each tile, anchor-
ing the tile’s query to the containing document’s topic. We
hence generate a query by using the g (global) most frequent
terms from the document,and the l (local) most frequent
terms from the tile. We empirically found that g = 3, l = 7
gives the best performance when using 10 terms.
Aggregating the Ranked Lists Each tilequery returns

a ranked list. We compute the relevance score for each re-
trieved Wikipage wi by aggregating the reversed ranking
order:

Relevance(wi) =
∑

ti∈T

(k − rankti(wi)) (1)

where T is the set of tiles generated from the document.
This scoring prioritizes Wikipages that appear high in some
tile or at reasonable ranks in many tiles, or preferably both.

3.2 Smoothing Controversy Score of Wikipages
Wikipedia Controversy Scores Previous work studied

algorithms for automatically computing scores that estimate
the level of controversy. They use features available in Wiki-
pages, meta-data, talk pages, and edit-history. We briefly
explain the three scores that the previous framework adopted.

C Score This is a regression-based method that estimates
the revision count of Wikipages with {controversial}
tags. The features include information from the edit-
history, such as number of unique editors and number
of reverts, as well as some metadata of Wikipages [6].

M Score Yasseri et al. investigated edit-wars based on sta-
tistical features of edits [10]. This score is theoretically
unbounded ranging from 0 to a few billions.

D Score This is a Boolean value indicating whether a Wiki-
page contains a dispute tag in it, which is assigned
by the page’s contributors This dataset is extremely
sparse, covering only 0.03% of the articles [4].

Unfortunately, these approaches are limited for the same
reason that many Wikipages with controversial topics do not
have sufficient edit-history or explicit edit-wars. There is a
tendency that the heat of the edit-wars are focused on one
Wikipage of a general and broad topic, leaving other related
but sub-topical pages less attended. After all, there is simply
no point of having the same “war” on all similar Wikipages.
Table 1 shows an example of a few “abortion” related top-
ics and their M and C Score. While the “Abortion” page
received a lot of attention, other pages with more specific
topics such as Abortion in certain countries and Abortion

Act had virtually no edit-wars. Unless there is a specific is-
sue or event specifically tied to the page, all general disputes
on abortion have been delegated to the “Abortion” page.

abortion

abortion_act

abortion_act_1967

abortion_rights

abortion_rights_movement

abortion_in_the_us

abortion_in_the_us_state_by_state

abortion_rights_violence

Figure 1: An example of the constructed network
for Abortion

Due to this phenomenon, even if we generate a better
query to find more relevant k pages, the framework still
would not be able to fully take advantage of that due to the
underestimated scores. Hence, it is necessary to revise these
scores to reflect controversy better. If the purpose of the M
or C score was to measure the controversy level presented
in the Wikipage per se, we need newly revised scores that
accurately signify controversiality of the topic in general. To
do this, we will construct a network that links topically re-
lated neighbors within the Wikipedia. We then revise the
controversy score by “smoothing” using the scores of neigh-
bors with more edit history, whose scores were computed
with more confidence.
Constructing Wikipages’ Graph We construct a tree-

structured graph to identify topically related neighbors of a
Wikipage. Let G = (V,E) be a directed graph with nodes
V (Wikipages) and edges E (sub-topical relations). An edge
e(u, v) represents that node v is a sub-topic of u.
As a simple and straightforward method to construct the

edges, we look at their titles. If a Wikipage u’s title is used
as a prefix of other v’s title, we assume that v is sub-topic of
u. While we use nodes’ titles to construct edges, we assume
there is a mapping between a title and a node and will use
them interchangeably.

Let a Wikititle T be a ordered list [t1, t2, ..., tn], where
ti is an i-th space-delimited token. The parent node set
P(T) (i.e., Wikipages whose titles that have T as a child) is
obtained by:

P (T) = {P i
T |P

i
T ∈ WT , i ∈ {1..n}}, P i

T = concatenate[t1, ..., ti]

where WT is a set of all Wikipedia titles. The graph also
contains many noisy relations when the prefix is an ambigu-
ous entity, or a simply too general word, such as“American”.
To filter out the noisy relations, we remove the edges if two
pages are not linked in any direction. Using this graph, we
finally revise the controversy score using smoothing.
Network-based Smoothing When Wikipage is given as

a query, we extract a sub-graph around the node from the
constructed graph using one of the two methods:

Pair-based: A sub-graph around the query node including
its children at all depth and its parents. The resultant
graph only consists of nodes that have a direct prefix-
contain relation with the query node.

Clique-based: Pair-based sub-graph + sibling nodes that
share the same parents with the query node. Although
siblings may not be topically related to the query node
especially if the parent (i.e., prefix) is a general term,
this allows broader coverage of potentially related pages.

Once we obtain the sub-graph, we treat all nodes in the
sub-graph as topically related neighbors of the query node.
We want to fix the query node’s controversy score by smooth-
ing from neighbors that have more reliable scores. For that
we assume that the controversy score of a Wikipage with
more revision history is more reliable. Hence we convert this
graph into a weighted, directed network whose direction rep-
resents which way influence should extend to (i.e., the one
with higher revision count to the other with lower count),
and whose edge weight represents the confidence of the in-
fluence relation, which is the revision count of the source
(Figure 2). From the graph, the new controversy score of
Wikipage Wi is computed as:

Same-sex marriage
in California (1,183)

Same-sex marriage
in Germany (5)

Same-sex marriage
in Romania (1)

Same-sex
marriage (15,715)

Same-sex marriage
in Sweden (306)

Same-sex
marriage in United

States (11,325)

Figure 2: A network constructed around the query
“Same-sex marriage in Sweden”. The scores are bor-
rowed from three neighbors that have more revision
counts than the query page by weighted smoothing.

Table 1: An example of two controversy scores on
several Wikipages on “Abortion”, before and after
score smoothing

Original scores Revised scores
M C M C

Abortion 4,102,593 0.300 4,102,593 0.300
Abortion Act 0 0 0 0
Abortion in China 0 0 2,062,156 0.166
Abortion in England 0 0 2,128,909 0.172
Abortion in the US 0 0.002 2,983,300 0.218

C′(Wi) =
∑

Wj∈inLinks(Wi)

C(Wj) ∗ rj∑
rk

(2)

where ri is a revision count of Wi.

3.3 Aggregation and Voting
We summarize the aggregation and voting schemes intro-

duced by previous work. Once the controversy scores are ob-
tained for k Wikipages, we aggregate the k scores by taking
average or max of them. Since we use three different scores,
M, C, and D, three aggregated scores, Magg, Cagg, and Dagg

are computed. We turn these scores into binary label indi-
cating controversial (1) or non-controversial (0), using cor-
responding thresholds. Mlabel = 1 if Magg ≥ ThresholdM ,
and 0 otherwise. Using the three generated labels, we use
a voting scheme to make a final decision. We test 6 voting
schemes as parameters in our experiments.
The webpage is controversial if:
— C/M/D: {Clabel, Mlabel, Dlabel} is 1, respectively.
— Majority: the majority (i.e., at least two) of {Clabel,

Mlabel, Dlabel} is 1.
— Or/And: Clabel{∨/∧}Mlabel {∨/∧}Dlabel is 1.

4. EXPERIMENTS

4.1 Dataset
We use the publicly available controversy dataset released

by Dori-Hacohen et al. [3]. We used 303 clueweb documents
whose controversy level was annotated with four scales: 1 -
“clearly controversial”, 2 - “possibly controversial”, 3 - “pos-
sibly non-controversial”, and 4 - “clearly non-controversial”.
To convert the annotations to binary judgments, we treated
the documents with average ratings among annotators of less
than 2.5 as controversial, and otherwise non-controversial.
Of 303 documents, 42% of them are controversial.
To test the effectiveness of the proposed query method,

we consider two other query baselines. One is TF10, the 10
most frequent terms, as in the prior work. As taking only k
terms as in a query might miss information, we consider an-
other baseline, all query that uses all terms in a document
as a query to observe the extreme case of TFN .
We consider 9 settings from all possible combinations of

three query methods and three scoring schemes (Table 2).
Run 4 is the setting proposed in the prior work [4]. In each
setting, we varied the four sets of parameters, the number
of neighbors K (1, 5, 10, 15, 20), aggregation method (avg,
max), voting methods (C, M, D, Majority, Or, And, D∨(C
∧ M)), and thresholds for C and M as tested in [4]. We
found the best parameter setting for each run using 5-fold
cross validation with the target metric accuracy. Thus, for 9

Table 2: Accuracy, F1, and the best parameters in 5-fold runs for different query and inferred score settings.
Run Query Inferred Score K C Threshold M Threshold Aggregation Acc. F1
1

ALL
N/A {5, 20} {0.17, 4.18 · 10−2} {40000,20000} {M, Maj.} 0.72 0.50

2 Clique 15 {0.17, 4.18 · 10−2} {40000,20000} {M, Maj.} 0.78 0.68
3 Pair {5, 20} {0.17, 4.18 · 10−2} {40000,20000} {M, Maj.} 0.73 0.53

4
TF10

N/A 20 4.18 · 10−2 {20000, 40000, 84930} {M, Maj.} 0.75 0.57
5 Clique 20 4.18 · 10−2 84930 Maj. 0.79 0.68
6 Pair {10, 20} 4.18 · 10−2 {20000, 84930} Maj. 0.75 0.57

7
TILE

N/A {10,15,20} 4.18 · 10−2 {40000,20000} {M, Maj.} 0.75 0.59
8 Clique 20 0.17 40000 M 0.80 0.71
9 Pair {10,15,20} 4.18 · 10−2 {40000,20000} {M, Maj.} 0.75 0.61

Table 3: Improvements of accuracy and F1 Score
between runs (bold: statistically significant)
Row # Runs |Acc1-Acc2| |F11-F12| p value

1 1 vs 2 6% 2% 0.01 · 10−2

2 1 vs 4 3% 7% 0.61
3 1 vs 7 3% 9% 0.08
4 4 vs 5 4% 11% 0.17 · 10−2

5 4 vs 7 0% 2% 0.18
6 5 vs 8 1% 3% 0.06 · 10−2

7 6 vs 9 0% 4% 0.01 · 10−2

8 7 vs 8 5% 12% 0.01 · 10−2

settings, there are 5 sets of parameters learned for each fold.
We used McNemar’s Test1 for statistical significance test.

4.2 Results
Impact of Query Methods Our statistical significant

tests suggest that the difference of accuracies between the
three query methods in runs 1, 4, and 7 are not significant
(Row 2 & 5 in Table 3), which suggest that the three meth-
ods mostly made similar classifications.
However, once we apply neighbor-based smoothing on con-

troversy scores, query methods cause classification to work
differently. The accuracy gain of TileQuery over TF10

was 1%, and 4% of F1-score with smoothing. Although the
accuracy gain was small, the query set that each method
performed well was different as the significance test implies
(Row 6 & 7 in Table 3).
Impact of Neighbor-based Smoothing In all settings,

using controversy score smoothing significantly improved the
classification accuracy and F1-score. As row 1, 4, and 8 in
Table 3 show, the accuracy was improved by 4-6% and the
F1-score was improved by 2-12% in all three query methods.
Clique-based neighbor selection consistently outperformed
pair-based selection.

5. CONCLUSION AND FUTURE WORK
We revisited the prior work for automatically detecting

controversy from the general open-domain webpages. We
identified two major weakness in the framework and pro-
posed two modifications to fix the issues. The controversy
score smoothing consistently improved the controversy clas-
sification accuracies by 4-6% compared to those without
smoothing. Overall, the run with our two modifications
of tilequery and controversy score smoothing gave the
best accuracy improving the previous framework by 5%. In

1https://en.wikipedia.org/wiki/McNemar%27s test

the future, we plan to further investigate different scenar-
ios when TF10 and TileQuery works well. As we were
only able to find topically related neighbors for 5% of the
Wikipages with prefix-relation, we will explore more sophis-
ticated methods to increase this coverage.

Acknowledgement

This work was supported in part by the Center for Intelligent
Information Retrieval, in part by NSF grant #IIS-0910884,
and in part by NSF grant #IIS-1217281. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of the sponsor. The authors thank Shiri Dori-
Hacohen for providing valuable resources.

6. REFERENCES
[1] Y. Choi, Y. Jung, and S.-H. Myaeng. Identifying

controversial issues and their sub-topics in news
articles. In PAISI, volume 6122 of Lecture Notes in

Computer Science, pages 140–153. Springer, 2010.

[2] S. Das, A. Lavoie, and M. Magdon-Ismail.
Manipulation among the arbiters of collective
intelligence: how wikipedia administrators mold public
opinion. CIKM ’13, pages 1097–1106, New York, NY,
USA, 2013. ACM.

[3] S. Dori-Hacohen and J. Allan. Detecting controversy
on the web. In CIKM, pages 1845–1848. ACM, 2013.

[4] S. Dori-Hacohen and J. Allan. Automated controversy
detection on the web. ECIR ’15, pages 423–434, 2015.

[5] M. A. Hearst. Texttiling: Segmenting text into
multi-paragraph subtopic passages. Comput. Linguist.,
23(1):33–64, Mar. 1997.

[6] A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi. He
says, she says: Conflict and coordination in wikipedia.
CHI ’07, pages 453–462, New York, NY, USA, 2007.
ACM.

[7] A.-M. Popescu and M. Pennacchiotti. Detecting
controversial events from twitter. CIKM ’10, pages
1873–1876. ACM, 2010.

[8] H. S. Rad and D. Barbosa. Identifying controversial
articles in wikipedia: A comparative study. WikiSym
’12, pages 7:1–7:10. ACM, 2012.

[9] L. Wang and C. Cardie. A piece of my mind: A
sentiment analysis approach for online dispute
detection. ACL ’14, pages 693–699, 2014.

[10] T. Yasseri, R. Sumi, A. Rung, A. Kornai, and
J. Kertész. Dynamics of conflicts in wikipedia. PLoS
One, 7(6):e38869, June 2012.

	Introduction
	Related Work
	Modified Framework
	TileQuery Generation
	Smoothing Controversy Score of Wikipages
	Aggregation and Voting

	Experiments
	Dataset
	Results

	Conclusion and future work
	References

