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ABSTRACT
In information retrieval, pseudo-relevance feedback (PRF)
refers to a strategy for updating the query model using the
top retrieved documents. PRF has been proven to be highly
e↵ective in improving the retrieval performance. In this pa-
per, we look at the PRF task as a recommendation problem:
the goal is to recommend a number of terms for a given query
along with weights, such that the final weights of terms in
the updated query model better reflect the terms’ contribu-
tions in the query. To do so, we propose RFMF, a PRF
framework based on matrix factorization which is a state-
of-the-art technique in collaborative recommender systems.
Our purpose is to predict the weight of terms that have not
appeared in the query and matrix factorization techniques
are used to predict these weights. In RFMF, we first create
a matrix whose elements are computed using a weight func-
tion that shows how much a term discriminates the query
or the top retrieved documents from the collection. Then,
we re-estimate the created matrix using a matrix factoriza-
tion technique. Finally, the query model is updated using
the re-estimated matrix. RFMF is a general framework that
can be employed with any retrieval model. In this paper, we
implement this framework for two widely used document re-
trieval frameworks: language modeling and the vector space
model. Extensive experiments over several TREC collec-
tions demonstrate that the RFMF framework significantly
outperforms competitive baselines. These results indicate
the potential of using other recommendation techniques in
this task.
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1. INTRODUCTION
Users often issue very short queries when using search

engines. Therefore, queries usually miss several important
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terms, which leads to poor retrieval performance. One of
the main techniques proposed for this problem is pseudo-
relevance feedback (PRF), also known as blind feedback.
PRF is described as a strategy to reformulate the query
model based on pseudo-relevant (top retrieved) documents.
The main goal of PRF is to improve the retrieval perfor-
mance, and PRF methods have been shown to be highly
e↵ective in many retrieval models [14, 20, 22, 31, 43].

The main idea behind this paper is to recast the PRF
task as a collaborative recommender system problem: the
query and its pseudo-relevant documents play the role of
users and terms play the role of items. Each term has a
weight in each query/document and this weight can be con-
sidered as the rating that the query/document (user) gives
to that term (item). Hence, the query model can be up-
dated by recommending a number of terms to the query in
a weighted manner. The intuition of the proposed frame-
work is that the query and the pseudo-relevant documents
have several commonalities, which are similar to a group of
users that have similar preferences, and thus collaborative
recommendation ideas are strongly related to what we need
in the pseudo-relevance feedback problem.

Matrix factorization techniques have been found to be
highly e↵ective in collaborative recommender systems, espe-
cially in those su↵ering from data sparsity [29]. As is widely
known, most information retrieval (IR) tasks also su↵er from
the data sparsity problem, since compared to the vocabulary
size, only a few words appear in the queries and documents.
As a result, we consider matrix factorization techniques for
solving our collaborative recommendation problem.

Based on the aforementioned idea, in this paper we pro-
pose RFMF

1, a PRF framework based on matrix factor-
ization techniques. RFMF tries to estimate the weights of
all terms for the query. Indeed, RFMF first creates a ma-
trix in which each row corresponds to the query or one of
the pseudo-relevant documents. In this matrix, each col-
umn is associated with each unique term in the feedback
document set. Each element of this matrix represents the
weight of a given term in a given query/document. RFMF
employs matrix factorization to predict the weights of un-
seen words for the query. We select non-negative matrix
factorization for implementing our framework, which is a
suitable matrix decomposition method for our problem. To
implement the RFMF framework, we also need to define a
proper weight function, i.e., the weight of each term given by
each query/document. The weight function must show how
much a term discriminates a given query/document from
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the collection because our purpose is to update the query
model in such a way that the final term weights better re-
flect the terms’ contributions in the query. From the rec-
ommender systems perspective, the weight of each term in
each query/document should be similar to the rating that
each user gives to a specific item. To implement the weight

function, in this paper, we only consider the query and the
top retrieved documents without any external information,
e.g., term dependency, linguistic resources, etc. The weight

function can potentially be enhanced using these kinds of
information that have been shown to be useful in the PRF
task [3, 21, 23, 40].

RFMF is a general framework that is independent of the
employed retrieval model. In this paper, we first implement
the weight function for the language modeling framework
[28], a well-structured and state-of-the-art retrieval frame-
work. To demonstrate the generality of RFMF, we also
study a number of heuristic weight functions for the well-
known vector space model.

We evaluate the proposed framework using five TREC
newswire and web collections. The results show that in
most cases the proposed PRF method for language mod-
eling framework significantly outperforms competitive base-
lines in terms of mean average precision (MAP). Moreover,
RFMF always outperforms all the baselines in terms of pre-
cision at top-ranked documents (P@10 and P@20). The
experiments also show that the proposed method is more
robust than the baselines, in all the collections. The excel-
lent performance of the proposed PRF method for the vector
space retrieval model indicates the generality of the RFMF
framework.

It should be noted that in addition to achieving good re-
sults, the proposed framework opens up a new research di-
rection for the pseudo-relevance feedback problem and sim-
ilar tasks (e.g., user profile updating), which is relating the
task to a recommendation problem. This work also indi-
cates the potential for other collaborative recommendation
techniques in this task.

2. RELATED WORK
In this section, we first present a number of existing PRF

methods and discuss how they di↵er from the proposed frame-
work. We further briefly review the applications of matrix
factorization techniques in related tasks.

2.1 Pseudo-Relevance Feedback
Query expansion via pseudo-relevance feedback is a com-

mon technique used to improve the retrieval e↵ectiveness in
many retrieval models [14, 20, 21, 22, 31, 35, 42, 43]. In this
subsection, we review the PRF methods which are the most
related to our research.

Rocchio algorithm [31] is one of the earliest relevance feed-
back methods, which was developed for the vector space
retrieval model. Rocchio algorithm combines the original
query vector with positive and negative feedback vectors
which are created using the relevant and non-relevant doc-
uments, respectively. Croft and Harper [5] proposed to im-
prove the retrieval e↵ectiveness without relevance informa-
tion using pseudo-relevance feedback. The negative feed-
back vector is not often used for PRF since there are too
many non-relevant documents which are spread out in the
space. Later on, with the development of classical proba-

bilistic models, a number of PRF algorithms based on the
Robertson/Sparck-Jones weight [30] have been proposed.

Because of the well-defined structure of the language mod-
eling framework, several PRF methods have been proposed
for this framework, such as relevance models [14] and model-
based feedback methods [43]. The idea behind the lan-
guage model-based PRF methods is to use top retrieved
documents to provide more accurate query language models.
Model-based feedback methods, including the mixture feed-
back model and the divergence minimization model (DMM),
try to separate the topical model of top retrieved docu-
ments from the background model. Recently, Lv and Zhai
[22] showed that DMM generates a skewed feedback model.
They proposed the maximum-entropy divergence minimiza-
tion model (MEDMM) by adding an entropy term to regu-
larize DMM, which leads to significant improvements. The
regularization strategy for PRF models was previously used
by Tao and Zhai [35] for the mixture model. Their main
focus was to generate a feedback model that does not need
to be interpolated with the original query model. The rel-
evance models [14] are the other early PRF methods for
the language modeling framework that are still among the
state-of-the-art methods. Unlike the model-based feedback
methods [43] that explicitly model the pseudo-relevant docu-
ments, Lavrenko and Croft [14] modeled a more generalized
notion of relevance in the relevance models. The compar-
ative analysis of PRF methods done by Lv and Zhai [20]
showed that the mixture model and a variant of relevance
models (i.e., RM3 [1]) outperform other PRF methods, in-
cluding the regularized mixture model [35] and the diver-
gence minimization model [43]. In their experiments, the
RM3 method was shown to be more robust than the other
methods. Parapar et al. [26] employed relevance models
for collaborative recommendation. Recently, Dehghani et
al. [8] proposed a PRF model which penalizes both general
and rare terms.

The aforementioned methods that are the most similar
to the proposed RFMF model, are based on unigram lan-
guage models without having access to additional sources of
information. Using other information, such as term prox-
imity [21, 24], term topics [38], term dependency [23], and
semantic similarity [25, 40, 41] has been shown to be e↵ec-
tive in PRF and query expansion. There are also a number
of learning-based query expansion methods that use the-
sauruses and external resources [32, 33]. In addition, there
has been research to determine which documents can be use-
ful in generating feedback models [7, 10]. Although some of
these methods perform well, they have di↵erent constraints
than our work and are not used in this paper. Note that
the RFMF framework can potentially use these sources of
information, and this will be investigated in future work.

In addition to the main idea behind the RFMF framework,
there is a fundamental di↵erence between the proposed PRF
method and the existing ones (more details in Section 4):
in many existing methods, the feedback model is only con-
structed using the pseudo-relevant documents (the feedback
model is usually interpolated with the query model); how-
ever, in our proposed framework, we consider the original
query in addition to the feedback documents. Indeed, the
core idea of the proposed framework is to expand the original
query using the words that not only discriminate feedback
documents from other documents, but are also related to
the original query.



2.2 Matrix Factorization Techniques
In general, matrix factorization techniques learn low-rank-

ed representations (also called latent factors) of an input
matrix. These latent factors have been widely used in a
number of IR tasks, such as document clustering [2]. In
recommender systems, the latent factors are used to predict
unseen values in the initial matrix. In fact, decomposing a
given matrix and multiplying the latent factors will give us
a re-estimated version of the initial matrix, and thus it will
help to predict unknown values in the initial matrix.

Matrix factorization techniques have been widely stud-
ied in various tasks. They have attracted considerable at-
tentions in collaborative recommender systems due to their
e�ciency and e↵ectiveness [34]. Latent semantic indexing
(LSI) [6] is an application of matrix factorization in infor-
mation retrieval that uses the singular value decomposition
method. Unlike in recommender systems, LSI directly uses
the latent factors. Matrix factorization has also been stud-
ied in other IR-related tasks, such as topic modeling [36],
word embedding [27], and document summarization [17].

In the context of pseudo-relevance feedback, Wu et al. [37]
proposed to use matrix factorization to cluster terms and
expand the query using these clusters. He et al. [11] also
integrated the results of text and image contents to improve
the image retrieval performance using local LSI. The main
idea in these methods are fundamentally di↵erent from ours.

3. RFMF: A PRF FRAMEWORK BASED
ON MATRIX FACTORIZATION

The purpose of the RFMF framework is to recommend
a number of words for a given query in a weighted man-
ner, such that the final weights of terms in the updated
query model better reflect the terms’ contributions in the
query. This recommendation should be done using feedback
documents. To this aim, we use the following mappings to
cast the PRF task to a simple collaborative recommendation
problem:2 the query and the feedback documents play the
role of users, words play the role of items, and the rates are
computed using the weights of seen terms in the query and
the feedback documents.3

Each query/document contains a limited number of words
and thus is a small sample for the model that represents it.
Therefore, the weights of a few terms are available for each
query/document and we should estimate the weights of all
terms even though most of them have not appeared in that
query/document. This shows that predicting term weights
for the PRF task su↵ers from the sparsity issue. Similarly,
collaborative recommender systems typically have the same
issue and a number of matrix factorization techniques have
been shown to be e↵ective in such situations [29, 34].

An overview of the RFMF framework is presented in Fig-

2Collaborative recommender systems seek to predict the rat-
ing that user would give to a given item. The predictions
are usually done based on the similarity between the users’
behavior [29, 34].
3Documents are often much longer than queries. Hence,
from the recommender systems perspective, the purpose is
to make recommendations for cold-start users (queries). Al-
though matrix factorizations are not particularly designed
for cold-start recommendation problems, in this paper, we
consider these techniques which are highly successful in var-
ious recommendation scenarios. We leave the study of cold-
start recommendation solutions for PRF as a future work.
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Figure 1: Overview of the RFMF framework.

ure 1. As shown in this figure, RFMF takes as input the
query and the feedback documents. Feedback documents
could be selected from relevant documents in case that rel-
evance judgements are available; otherwise, it can be as-
sumed that the top-k retrieved documents for a given query
are relevant to the query, and thus they could be consid-
ered as pseudo-relevant documents.4 To update the query
model using the feedback documents, RFMF creates a ma-
trix from the inputs, in which rows and columns correspond
to query/documents and terms, respectively. Then, it em-
ploys a matrix factorization algorithm to decompose the cre-
ated matrix. Multiplying the resulted matrices will result a
re-estimated version of the input matrix. Indeed, matrix
factorization techniques predict the weights of terms that
have not appeared in the query and these predictions are
done based on the available term weights. Since the query
weights are put in the first row of the input matrix (see Fig-
ure 1), RFMF also uses the first row of the output matrix
to re-estimate the query model. As described, the RFMF
framework is independent of the retrieval model that is used.
Therefore, RFMF is a general framework and can be de-
ployed on top of any retrieval model. In more detail, RFMF
includes three main components: the model-specific weight
function, the model-specific query updating method, and
the matrix factorization component. The first two compo-
nents depend on the retrieval model, and thus they should
be implemented for each retrieval model.

In the proposed feedback procedure, RFMF first creates
a matrix R = [rij ] with k + 1 rows where the first row
corresponds to the input query and each of the remaining k
rows corresponds to each of the top-k documents retrieved
in response to the query. The matrix R has |W | columns
where W is the set of unique words appeared in the top-k
documents or the query. Each element of the matrix R is
calculated as:

rij =

⇢
weight(wj , q) if i = 1
weight(wj , di�1) o.w.

(1)

where q, di�1, and wj respectively denote the given query,
the (i� 1)th retrieved document, and the jth element of the
set W . The function weight shows how much the given word
that appeared in the given query/document distinguishes
that query/document from the other documents (or collec-
tion).

To implement the RFMF framework, we should answer
three questions: i) how to decompose the created matrix?,
ii) how to define the weight function?, and iii) how to up-
date the query model? In the rest of this section, we first

4In this paper, we focus on pseudo-relevance feedback which
is a more realistic case.



introduce a non-negative matrix factorization technique for
providing an answer to the first question. Then, we answer
the next two questions for two widely used retrieval mod-
els: language modeling and vector space model. Finally, we
discuss the computational complexity of the implemented
framework to assess the possibility of employing RFMF in
real-world applications.

3.1 Non-Negative Matrix Factorization
Non-negative matrix factorization (NMF) is a matrix de-

composition method that has been extensively exploited in
various tasks, e.g., document clustering [2], document sum-
marization [17], and probabilistic latent semantic indexing
[9]. NMF has been shown to be highly e↵ective in collabo-
rative recommender systems [18, 44].

NMF is a matrix factorization algorithm which finds non-
negative factorization of a given non-negative matrix. For-
mally writing, the purpose of NMF is to decompose a non-
negative matrix A = [aij ] 2 Rm⇥n

+ to two matrices U =
[uik] 2 Rm⇥r

+ and V = [vkj ] 2 Rr⇥n
+ where A ⇡ UV . It

should be noted that the parameter r is a positive integer
(usually r < m, n) which should be given as the input of the
NMF algorithm. To find the matrices U and V , an objec-
tive function which computes the di↵erence between A and
UV should be minimized. We consider the most popular ob-
jective function for the NMF algorithm, i.e., the Frobenius
norm, also known as the Euclidean distance, which can be
calculated as:

{U, V } = argmin
U,V

1
2

mX

i=1

nX

j=1

(aij � [UV ]ij)
2

Note that the objective function is only computed for the
non-zero elements of the matrix A. It can be shown that
although the above objective function is convex when one of
the matrices U and V is fixed, it is not convex in the case
that both matrices should be predicted. Hence, it is not ex-
pected to find the global optimal solution for an NMF prob-
lem [12]. Gradient descent might be the simplest way to find
local solutions, but its convergence is very slow. Conjugate
gradient is an alternative for solving this problem, which
has been shown to be faster. The gradient-based methods
su↵er from being very sensitive to the step size [16]. We
consider multiplicative update rules to find the solution of
NMF problems as follows:

uik  uik
[AV T ]ik
[UV V T ]ik

, vkj  vkj
[UTA]kj
[UTUV ]kj

(2)

where 1  i  m, 1  k  r, and 1  j  n. It has
been proven by Lee and Seung [16] that the defined objective
function is non-increasing under the above update rules, and
thus its convergence is guaranteed.

After performing the mentioned iterative algorithm, we
can compute the matrix bA by multiplying the matrices U
and V . Although the matrices U and V are used in many
tasks as latent features, in this paper we just use the matrix
bA as the output of the NMF algorithm. Indeed, the matrix
bA is an approximate estimation for matrix A.
NMF could be a useful method for information retrieval

tasks where there is no negative element in the matrix. In
addition, the non-negativity constraint makes NMF a suit-
able method for sparse representations [15], and thus NMF
can cope with the sparsity characteristic of IR tasks. That

is why we choose NMF among the matrix factorization tech-
niques for implementing the RFMF framework.

3.2 RFMF for Language Models
In this subsection, we explain how to choose a proper

weight function and how to update the query model for
the language modeling framework [28]. Our goal is to define
the weight of each word w for each document d, such that
it reflects how much this word discriminates the document
d from the other documents. In other words, we assign high
probabilities to the words with high frequencies in the doc-
ument d, but with low frequencies in the collection. Indeed,
similar to [43], the words of each document d are catego-
rized into two types: background words and topical words.
To this end, we consider a boolean hidden variable t where
the values 0 and 1 denote the background words and topical
words, respectively.

According to the purpose of pseudo-relevance feedback, we
define the function weight(w, d) (used in Equation (1)) as
p(t = 1|w, d). Considering the Bayes rule, we can compute
this probability as:

weight(w, d) = p(t = 1|w, d) = 1� p(t = 0|w, d)

= 1� p(t = 0|d)p(w|t = 0, d)
p(w|d) (3)

Under the assumption that conditioned on the event t = 0,
the word w is independent of the document d,5 i.e., p(w|t =
0, d) = p(w|t = 0), Equation (3) becomes:

p(t = 1|w, d) = 1� �dp(w|C)
p(w|d) (4)

where C denotes the background collection. In the calcu-
lation of Equation (4), we estimate p(w|t = 0) as p(w|C).
The parameter �d is also equal to p(t = 0|d) which shows
how much the representation of document d comes from the
background words. To calculate p(w|d), if we use the max-
imum likelihood estimation and one of the simple smooth-
ing methods such as, Absolute discounting, Jelinek-Mercer,
and Dirichlet prior, with the unseen coe�cient of ↵d, Equa-
tion (4) can be rewritten as:

p(t = 1|w, d) = 1� �dp(w|C)
↵dp(w|C) + (1� ↵d)pML(w|d)

=
(↵d � �d)p(w|C) + (1� ↵d)pML(w|d)

↵dp(w|C) + (1� ↵d)pML(w|d) (5)

where pML(w|d) is the maximum likelihood estimation of
the probability of word w in the document d.6

Since p(t = 1|w, d) is a probability and should be in the
[0, 1] interval, we can conclude that �d  ↵d. On the other
hand, by decreasing the value of the parameter �d, the in-
fluence of p(w|C) will be increased and in the extreme case,
i.e., �d = 0, p(t = 1|w, d) is equal to 1 for all w in d. To put
the issue into perspective, the parameter �d should be less
than or equal to ↵d and also very close to it.

5It is not an unusual assumption since t = 0 shows the
background words. In the probabilistic retrieval models, it
is assumed that in the non-relevancy conditions, document
and query are independent [42], which is similar to our as-
sumption.
6weight(w, q) can be computed similarly. The unseen coe�-
cient for computing p(t = 1|w, q) should be selected carefully
to give a high weight to query terms.



It should be noted that since the function weight is equal
to a probability, it is positive and there is no problem for
the NMF computations. In the next step, we perform matrix
factorization and then compute the feedback language model
✓F using the following equation:

p(wj |✓F ) =
br1jP|W |
q=1 br1q

where bR = [brij ] is the estimation of the matrix R after per-
forming the NMF algorithm. Since we first put the weight
of each term in the query in the first row of matrix R, the
first row of matrix bR shows the re-estimated version of the
query model with the help of feedback documents. There-
fore, we can use these weights for estimating the feedback
language model. Because there are too many words in the
feedback language model and adding all of them to the query
may decrease both the retrieval e�ciency and e↵ectiveness,
similar to previous work [20, 21, 22, 43] we add the top m
terms of the feedback language model to the query. Hence,
the language model ✓F0 is computed using the normalized
values of the top m terms in ✓F . We linearly interpolate the
maximum likelihood estimation of the original query model
✓Q with the feedback language model ✓F0 as follows:

✓Q0 = (1� ↵)✓Q + ↵✓F0 (6)

where the parameter ↵ 2 [0, 1] controls the weight of ✓Q
and ✓F0 in the computation of the modified query language
model ✓Q0 .

3.3 RFMF for Vector Space Model
Based on the aforementioned intuition of the function

weight, this function should represent how much each word
w makes the document d specific. Because of the heuristic
nature of the vector space model, we can consider several
heuristic weight functions. One of these functions is defined
as below:7

weight(w, d) = TF (w, d) ⇤ IDF (w)

where TF and IDF are term frequency and inverse docu-
ment frequency, respectively. The multiplication of TF and
IDF shows how much the word w is specific for document
d, and thus it would be a proper definition for the func-
tion weight. We can also consider other heuristic weight
functions, such as TF (w, d). But according to the intu-
ition behind the function weight and our results8, we pro-
pose to use TF-IDF function which has been widely used in
the literature and makes more sense compared to the oth-
ers. Note that TF can be computed as raw TF, logarithmic
TF, or even length normalized TF which are extensively ex-
ploited in the literature. In these formulations, it is clear
that weight is a non-negative function and satisfies the non-
negativity constraint of the NMF algorithm.

After performing the matrix factorization, we define the
feedback vector ~F as ~Fj = br1j where bR = [brij ] is the estima-
tion of the matrix R after performing the NMF algorithm.
Similar to the proposed feedback method for the language
modeling framework (see Section 3.2), we consider the first

row of matrix bR to estimate the feedback vector ~F , since
we put the query vector in the first row of matrix R. Thus,

7weight(w, q) can be computed similarly.
8We study a few other heuristic weightings, such as TF and
term occurrence, in our experiments.

~F is the re-estimated version of the query vector ~Q. Again,
we only consider the top m terms with the highest values to
create the feedback vector ~F 0.

Since the goal of most retrieval tasks, including ad-hoc re-
trieval, is to rank the documents based on their similarities
to the query, the norm of the query vector is not important;
it can be easily proved that ranking based on the dot prod-
uct or the cosine similarity does not depend on the norm of
the query vector. Therefore, the important issue in combin-
ing the query vector and the feedback vector is to be able
to produce all possible angles between the angles of these
two vectors. According to the aforementioned arguments,
we linearly interpolate the unit query vector with the unit
feedback vector. As a result, the modified query vector ~Q0

is calculated as below:

~Q0 = (1� ↵)Q̂+ ↵F̂ 0

where Q̂ and F̂ 0 respectively denote the unit original query
and feedback vectors. The parameter ↵ controls the influ-
ence of each vector and it should be in the [0, 1] interval.

4. DISCUSSION
In this section, we first discuss the time complexity of the

proposed framework to show that it is fast enough to be
deployed in real-world applications. We further explain why
the proposed PRF framework should perform well.

4.1 Time Complexity
The computational complexity of each NMF step (see

Equation (2)) in the proposed framework is O(k.|W |.r) [19],
where k, |W |, and r denote the number of feedback docu-
ments, the number of unique terms in the feedback docu-
ments and the query, and the rank of matrix factorization,
respectively. Furthermore, as mentioned in Section 3.1, r
is less than or equal to the matrix dimensions. In addi-
tion, since NMF is an iterative algorithm, O(k2.|W |.t) is
an upper-bound for the total time complexity of the RFMF
framework where t is the number of iterations.

As widely discovered in previous work [43, 20, 22, 25,
40], k is usually set to a small number, e.g., 10. Hence, by
considering a reasonable value for t (e.g., 1000), the compu-
tations of the proposed method will be completed in a very
short time. Moreover, there are a number of research stud-
ies that try to reduce the running time of NMF methods.
For instance, Yu et al. [39] proposed a parallel algorithm
to improve the e�ciency of the NMF algorithm. All these
show that the proposed framework can be used in real-world
applications.

4.2 Why should RFMF work well?
According to the intuition behind the proposed framework

which is mentioned in Section 3, we believe it is clear why
the proposed framework selects good expansion terms for a
given query. In this subsection, we explain why the proposed
framework can perform better than other methods?

In the following, we list the special characteristics of the
proposed framework:

• RFMF uses matrix factorization techniques that are
well-known to be able to capture latent features. In fact, ma-
trix factorization techniques find low-ranked representations
of the input matrix. These matrices with lower dimensions
can model latent factors. In our particular problem, we ex-
pect that matrix factorization techniques capture latent fea-



Table 1: Collections statistics.
ID collection queries (title only) #docs avg doc length #qrels
AP Associated Press 88-89 TREC 1-3 Ad-Hoc Track, topics 51-200 165k 287 15,838

Robust
TREC Disks 4 & 5 minus
Congressional Record

TREC 2004 Robust Track,
topics 301-450 & 601-700

528k 254 17,412

WT2g general web crawl TREC 8 Web Track, topics 401-450 247k 645 2279
WT10g general web crawl TREC 9-10 Web Track, topics 451-550 1692k 399 5931

GOV2 2004 crawl of .gov domains
TREC 2004-2006 Terabyte Track,

topics 701-850
25,205k 648 26,917

tures between the important terms in pseudo-relevant docu-
ments. These latent features can help to avoid adding non-
relevant terms to the query. This property of RFMF can
increase its robustness.

• RFMF considers both the original query and the pseudo-
relevant documents for query expansion; while many ex-
isting PRF methods, e.g., mixture model, divergence min-
imization model, etc., only construct the feedback model
from the pseudo-relevant documents. In other words, RFMF
tries to expand the query using the terms that not only dis-
criminate the feedback documents from a collection, but also
those that are relevant to the original query terms. We be-
lieve that this can be successfully done by RFMF, since the
goal of collaborative recommender systems is to recommend
items that are similar to those that the user likes based on
the preferences of other users with similar preferences. A
few PRF methods, such as RM3 [14] which is known as one
of the best and the most robust PRF methods [20] also con-
sider the query terms with independence or conditionally
independence assumptions. RFMF can relax these indepen-
dence assumptions by capturing latent features.

• Unlike a number of the existing PRF methods, such
as the mixture model [43] and its variations, which put all
the feedback documents together as a unit, RFMF considers
each document separately. In other words, in these models,
each word contributes equally, while in the proposed method
each document contributes equally. The most important ad-
vantage of our assumption is to penalize long feedback doc-
uments. Note that a number of PRF methods, such as rel-
evance models [14], also have the same assumption as ours.

5. EXPERIMENTS

5.1 Experimental Setup
We use five standard test collections in our experiments:

AP (Associated Press 1988-89), Robust (TREC Robust Tra-
ck 2004 collection), WT2g (TREC Web Track 2000 col-
lection), WT10g (TREC Web Track 2001-2002 collection),
and GOV2 (TREC Terabyte Track 2004-2006 collection).
The first two collections are homogeneous datasets contain-
ing news articles. WT2g, WT10g, and GOV2 are small,
medium, and large web collections, respectively. The statis-
tics of these datasets are reported in Table 1. All documents
were stemmed using the Porter stemmer. Stopwords were re-
moved in all the experiments using the standard INQUERY
stopword list. In all experiments, only the title field of the
TREC topics were used as queries.

For the language modeling framework, we employed the
KL-divergence retrieval model [13] with the Dirichlet prior
smoothing method. We used the dot product similarity in
the experiments related to the vector space model. Exper-
iments were carried out using the Lemur and the Galago

toolkits.9 We also employed the non-negative matrix factor-
ization method implemented in the NIMFA library10 [45].

5.1.1 Parameter Setting
In all experiments, the Dirichlet prior smoothing param-

eter µ is set to the typical value of 1000. The number of
feedback documents, the feedback term count, and the feed-
back coe�cient are set using 2-fold cross validation over each
collection. We sweep the number of feedback documents
between {10, 25, 50, 75, 100}, the feedback term count be-
tween {10, 25, 50, 75, 100}, and the feedback coe�cient be-
tween {0, 0.1, · · · , 1}. The other hyper-parameters of the
baselines, if any, are also set using the same procedure.

As suggested in the literature [15, 16], the rank of the
NMF algorithm should not exceed the initial matrix dimen-
sions. Therefore, since there are a few number of rows in
all the matrices created in the proposed method, we set the
rank of NMF algorithm to the number of rows. We use the
KL-divergence as the objective function for NMF. The max-
imum number of NMF iterations is also set to 1000. Note
that although solving NMF is not a convex optimization
problem, the results obtained by di↵erent NMF runs in our
task are very close to each other.

5.1.2 Evaluation Metrics
To evaluate retrieval e↵ectiveness, we use mean average

precision (MAP) of the top-ranked 1000 documents as the
main evaluation metric. In addition, we also report the pre-
cision of the top 10 and 20 retrieved documents (P@10 and
P@20). Although P@10 is a popular metric to show the ef-
fectiveness of methods in top retrieved documents, it would
not be enough for our task, since the query is updated using
the top 10 documents11. Therefore, we also consider P@20
which o↵ers us an insight into the e↵ectiveness of methods
in the next top retrieved documents. Statistically significant
di↵erences of MAP, P@10, and P@20 values are determined
using the two-tailed paired t-test computed at a 95% confi-
dence level (p value < 0.05).

To evaluate the robustness of methods, we use the robust-
ness index (RI) [4] which is defined as

N+�N�
|Q| , where |Q|

denotes the number of queries. N+/N� shows the number
of queries improved/decreased by the feedback method. The
RI values are always in the [�1, 1] interval and the methods
with higher values are more robust.12

9http://www.lemurproject.org/
10http://nimfa.biolab.si/
11Interestingly, although we do cross-validation to set the
number of feedback documents, all the feedback methods
that we study in this paper always select 10 as the number
of feedback documents.

12To avoid the influence of very small performance changes
in the RI values, we only consider the improvements/losses
higher than 10% (relatively).



Table 2: Comparison of di↵erent pseudo-relevance feedback methods in the language modeling framework. Superscripts
0/1/2/3/4 indicate that the improvements over MLE/MIX/RM3/RM4/MEDMM are significant. The highest value in each
row is marked in bold.

Dataset Metric MLE MIX RM3 RM4 MEDMM RFMF

AP

MAP 0.2644 0.3106 0.3187 0.2875 0.3269 0.32960123

P@10 0.4462 0.4450 0.4470 0.4208 0.4551 0.457703

P@20 0.3792 0.4232 0.4294 0.3876 0.4289 0.4356013

RI – 0.43 0.42 0.14 0.20 0.54

Robust

MAP 0.2490 0.2721 0.2820 0.2656 0.2793 0.289901234

P@10 0.4237 0.4177 0.4356 0.4253 0.4406 0.4442013

P@20 0.3580 0.3677 0.3733 0.3610 0.3679 0.382301234

RI – 0.13 0.26 0.11 0.27 0.29

WT2g

MAP 0.3034 0.3299 0.3238 0.3092 0.3300 0.329003

P@10 0.4480 0.4660 0.4680 0.4520 0.4680 0.470003

P@20 0.3770 0.3980 0.3950 0.3990 0.4010 0.40200

RI – 0.22 0.18 0.10 0.26 0.30

WT10g

MAP 0.2080 0.2060 0.2197 0.2092 0.2226 0.22660123

P@10 0.3030 0.3040 0.3141 0.3030 0.3111 0.3221013

P@20 0.2626 0.2687 0.2687 0.2566 0.2808 0.28680123

RI – 0.05 0.14 -0.04 0.23 0.25

GOV2

MAP 0.2965 0.3099 0.3135 0.2938 0.3116 0.322101234

P@10 0.5372 0.5345 0.5358 0.5182 0.5500 0.573601234

P@20 0.5122 0.5209 0.5274 0.5068 0.5314 0.54160123

RI – 0.05 0.15 -0.07 0.05 0.22

5.2 Results and Discussion
In this section, we evaluate RFMF for both language mod-

eling and the vector space model frameworks.

5.2.1 RFMF for Language Models
Our baseline methods include (1) the standard maximum

likelihood estimation (MLE) of the query model without
feedback, (2) the mixture model (MIX) [43], (3,4) the rele-
vance models (RM3 and RM4) [1, 14], and (5) the maximum-
entropy divergence minimization model (MEDMM) [22] wh-
ich was recently proposed to improve the performance of the
original divergence minimization model [43]. We do not con-
sider other methods, such as the regularized mixture model
and the divergence minimization model, since the mentioned
baselines have shown to outperform these methods in di↵er-
ent test collections [20, 22].

As described in Section 2, there are a number of PRF
methods that have extended PRF by incorporating addi-
tional evidences, such as term proximity [21, 24], semantic
similarities [25, 40], and term dependencies [23], or by em-
ploying feature-based methods (e.g., [4, 23]) based on the
standard PRF methods. They mainly depend on the stan-
dard PRF methods [22], and focus on various feedback ev-
idences that are orthogonal to our research. Therefore, we
do not consider these methods in our experiments to avoid
unnecessary apples-to-oranges comparisons.

The results obtained by the proposed method and the
baselines are reported in Table 2. According to this table,
all the baseline feedback methods outperform MLE (without
feedback) which shows the e↵ectiveness of the PRF meth-
ods in the language modeling framework. In Table 2, the
proposed method outperforms all the baselines in terms of
MAP, P@10, P@20, and RI in all the collections, except in
one case (MAP in WT2g collection) where MEDMM and
MIX perform better than RFMF, but these improvements
are not statistically significant. The statistical t-test shows

that the MAP, P@10, and P@20 improvements over MLE
are always significant. These improvements over the state-
of-the-art baselines are also usually significant, especially in
Robust and GOV2. These results show the e↵ectiveness of
the proposed method compared to strong PRF methods.

Furthermore, compared to all the baselines, the proposed
method is shown to be more robust in all the collections,
in terms of the robustness index. Interestingly, even in the
WT2g collection where MEDMM and MIX perform better
than RFMF in terms of MAP, the proposed method is shown
to be more robust than the baselines.

By computing the absolute and the relative improvements
of P@10 and P@20 obtained by the proposed method com-
pared to MLE, we can observe that P@20 improvements
are often higher than P@10 improvements. This shows that
since the top 10 documents are used as the pseudo-relevant
documents, precision of the top 10 documents does not in-
crease as much as precision of the top 20 documents. In
other words, the PRF method extracts the feedback terms
from the top 10 documents, and thus it is likely that these
documents will be retrieved again after the query expansion.

To see the sensitivity of the proposed method to the hyper-
parameters, in the next set of experiments, we evaluate
RFMF with di↵erent parameter values. In these experi-
ments, we sweep one of the parameters and fix the other ones
to their default values: 50 for the feedback term count, 0.5
for the feedback interpolation coe�cient (see Equation (6)),
and 1 for �d/↵d (see Equation (5)). Since all the feedback
methods always select 10 as the number of feedback doc-
uments during the cross-validation (see Section 5.1.1), we
fix this parameter and set it to 10. The results of these
experiments in terms of MAP are plotted in Figure 2.

According to Figure 2, the proposed method is stable with
respect to changes in the number of feedback terms when
this parameter is su�ciently high. In other words, there
is no statistically significant di↵erences between the MAP
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Figure 2: Sensitivity of RFMF in the language modeling framework to the number of feedback terms, the feedback interpolation
coe�cient, and the parameter �d.

values achieved by the proposed method for various number
of feedback terms in {50, 75, 100}. Usually the best result is
achieved when 25 terms are added to the query (this value
is 50 for GOV2). This can be an advantage of the proposed
method compared to a number of existing methods, such
as the relevance models, which need many words (usually
100) to show their best performance; since adding many
terms to the query will make the second phase of retrieval
process (after query expansion) much slower. In addition,
the methods that need too many terms to perform well are
trying to increase the recall value by adding more terms to
the query, while the proposed method increases the precision
value as previously shown in Table 2.

The changes of MAP values with respect to sweeping the
feedback coe�cient value in Figure 2 demonstrate that when
this parameter is set to 1 (when the feedback model is not
interpolated with the query model), the performance dra-
matically drops in all collections. The reason is related
to the weight function that we use for creating the feed-
back matrix. Regarding the weight function introduced in
Section 3.2, we give a lower weight to the query/document
terms that are more common in the collection and if a query
contains general terms, a low weight will be assigned to
them. Thus, combining the feedback language model with
the query language model can give a more reasonable weight
to general query terms. Therefore, to have an e�cient esti-
mation of the query model and to improve the performance,
the feedback language model should be interpolated with the
original query language model. An interesting observation
here (in sweeping the feedback coe�cient) is that the curve
patterns of web collections (WT2g, WT10g, and GOV2) are
very similar to each other and the curves of newswire collec-
tions also follow a similar pattern. According to these obser-
vations, the weight of generated feedback model should be
near to 1 for the newswire collections, but much lower in the
web collections. The reason is that web collections contain
noisier and longer documents compared to the news articles,
and thus the generated feedback model in these collections
might be less accurate.

In the last plot in Figure 2, we change the value of �d.
According to this plot, the best value for this parameter is
equal to ↵d. Note that when �d = 0, the matrix R becomes
a binary matrix which shows the occurrence of terms in the
documents. In addition, the MAP changes in response to
changing the value of �d are more stable in newswire collec-
tions compared to the web collections. The reason is that
�d controls the weight of each term that comes from a noisy
collection and the web collections contain noisier documents.

5.2.2 RFMF for Vector Space Model
To show the generality of the RFMF framework, we also

implement it for the vector space model framework. To do
so, we compare the proposed method with two baselines:
(1) document retrieval without feedback (NoPRF) and (2)
the modified Rocchio algorithm [31, 32] which has been ex-
tensively used as a state-of-the-art PRF method in the vec-
tor space model framework for many years. We consider
the following heuristics as the weighting function in our
proposed method: (1) term occurrence (TO) which is a bi-
nary function which specifies the occurrence of terms in the
documents, (2) term frequency (TF) which is a well-known
heuristic in the vector space model framework, (3,4) TO-
IDF and TF-IDF which are respectively computed as the
product of the first two heuristics and inverse document fre-
quency which shows how much a term is general based on
its occurrences in the collection.13

The results obtained by the proposed method and the
baselines over all the collections are reported in Table 3.
According to this table, RFMF with di↵erent heuristics, as
well as the Rocchio algorithm, always outperforms NoPRF.
The MAP, P@10, and P@20 improvements of RFMF (with
TF-IDF weighting) over the NoPRF method are always sta-
tistically significant. Among the heuristics that are consid-
ered as the weighting function for RFMF, TF-IDF performs
better than the other ones in all the collections, in terms of
MAP. This result was expected since our weighting func-
tion should show how much a term discriminates a docu-
ment/query from the collection, and thus both TF and IDF
are essential components in the weighting function. In ad-
dition, RFMF outperforms the Rocchio algorithm in terms
of MAP, P@10, and P@20 in all the collections except in
WT2g (in terms of MAP) and in AP (in terms of P@20).

Considering the robustness index reported in Table 3,
the proposed method is always more robust than the Roc-
chio algorithm, which means that in general, the number
of queries improved/decreased by the proposed method are
higher/lower than those by the Rocchio algorithm.

To capture the sensitivity of the proposed framework to
the input parameters, i.e., the number of feedback terms
and the feedback interpolation coe�cient, we plot the MAP
values achieved by sweeping these parameters in Figure 3.
In these experiments, we consider TF-IDF as the weighting
function. According to this figure, by increasing the number
of feedback terms, the performance of RFMF also increases.

13For all methods, we use the well-known logarithmic TF and
IDF formulas used in the Lemur toolkit.



Table 3: Comparison of PRF baselines and RFMF for the vector space model framework. Superscripts 0/1 indicate that the
improvements over NoPRF/Rocchio are statistically significant. The highest value in each row is marked in bold.

Dataset Metric NoPRF Rocchio
RFMF

TO TF TO-IDF TF-IDF

AP

MAP 0.2609 0.3198 0.30990 0.32010 0.30650 0.326301

P@10 0.3913 0.4523 0.44700 0.43560 0.42890 0.45500

P@20 0.3715 0.4258 0.42280 0.41780 0.40600 0.42050

RI – 0.16 0.42 0.22 0.22 0.38

Robust

MAP 0.2294 0.2657 0.25530 0.26460 0.25890 0.272901

P@10 0.4024 0.4233 0.43090 0.42290 0.4092 0.435301

P@20 0.3301 0.3590 0.36350 0.36120 0.35020 0.369701

RI – 0.23 0.26 0.32 0.21 0.32

WT2G

MAP 0.2456 0.2948 0.27400 0.27830 0.27380 0.28260

P@10 0.3980 0.4520 0.42400 0.45800 0.42600 0.45800

P@20 0.3270 0.3580 0.35300 0.36100 0.34500 0.36200

RI – 0.5 0.24 0.26 0.32 0.54

WT10G

MAP 0.1836 0.2063 0.1951 0.20640 0.1920 0.21010

P@10 0.2879 0.2970 0.30300 0.30610 0.2939 0.313101

P@20 0.2505 0.2702 0.27880 0.27630 0.27170 0.286301

RI – 0.11 0.09 0.27 0.06 0.33

GOV2

MAP 0.2726 0.2996 0.28340 0.29720 0.29140 0.308801

P@10 0.4892 0.5264 0.52370 0.53250 0.52770 0.543901

P@20 0.4702 0.5141 0.51170 0.52230 0.51580 0.535701

RI – 0.09 0.04 0.13 0.09 0.19
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Figure 3: Sensitivity of the proposed framework in the vector
space model framework to the number of feedback terms and
feedback interpolation coe�cient in terms of MAP.

This behavior is the same for all the collections. According
to Figures 2 and 3, RFMF in the language modeling and
the vector space model frameworks show di↵erent behaviors
when we sweep the number of feedback terms. The reason is
related to the weighting function, which plays a key role in
the RFMF e↵ectiveness. The results of RFMF with di↵erent
heuristic functions as the weighting function can confirm
this claim (see Table 3).

When the value of feedback interpolation coe�cient chang-
es, the performances of RFMF in di↵erent collections do not
follow similar patterns. In other words, the feedback coe�-
cient is a collection-dependant parameter and should be set
in a proper way, such as cross-validation that was done for
generating the results in Table 3. In AP and WT10g, our
method successfully generates good expansion vectors that
do not need to be interpolated with the original query vec-
tor. For the other collections, in particular for WT2g and
GOV2, interpolating the expansion vector with the original
query vector is vital.

By looking at Tables 2 and 3 to compare the results achie-
ved by the RFMF framework in both language modeling and
the vector space model frameworks, we can figure out that

RFMF in the language modeling framework performs better
than in the vector space model framework, especially in the
Robust, WT2g, WT10g, and GOV2 collections. A reason
is related to the weight function that is defined for each of
these retrieval frameworks. By considering other heuristic
TF weighting formulations or better weight functions in the
RFMF framework, the results of RFMF in the vector space
model framework may be improved.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed RFMF, a general pseudo-relev-

ance feedback framework based on matrix factorization, wh-
ich can be deployed on top of any retrieval model. RFMF
recasts the relevance feedback task as a collaborative recom-
mendation framework. We implemented this framework us-
ing the non-negative matrix factorization technique for two
widely used retrieval frameworks: language modeling and
the vector space model.

We evaluated our implemented framework on five stan-
dard TREC newswire and web collections. The results in-
dicate that the proposed method for the language modeling
framework significantly outperforms competitive PRF base-
lines in nearly all cases. The vector space model experi-
ments demonstrate the generality of the RFMF framework.
Furthermore, the proposed method was shown to be more
robust than the baselines in both retrieval models.

The successful development of the RFMF framework for
two retrieval models indicates the potential of this PRF
framework to be further developed for other retrieval mod-
els (e.g., Okapi BM25 and the divergence from randomness
model) in the future. In addition, enriching the defined
weighting functions using additional resources and evidences
(e.g., term dependencies) can be a focus of future work. The
proposed framework opens up a new research direction to
study other recommendation approaches, especially those



designed for cold-start recommendation problems, for PRF
and related tasks (e.g., user profile updating).
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