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Abstract

Multi-label classification is an important task in many modern machine learn-
ing applications. Accurate methods model the correlations and relationships be-
tween labels, either by assuming a low-dimensional embedding of the labels or a
graph structure of label dependencies. While such interactions can be achieved
using feed-forward predictors, problems with tight coupling between labels are
better posed as structured prediction problems. Unfortunately, prior applications
of graphical models to multi-label classification scale poorly. In response, we in-
troduce discriminative mean field networks, an iterative structured prediction tech-
nique applicable to substantially larger label sets. We employ a deep architecture
to define an energy function of candidate labels, and form predictions using back-
propagation to iteratively optimize the energy with respect to the labels. This deep
architecture captures dependencies between labels that would lead to completely
intractable graphical models, and enables a form of structure learning by auto-
matically learning discriminative features of the structured output. The technique
is effective on a variety of benchmarks, and generalizes easily to other structured
prediction applications.

1 Introduction

Multi-label classification is an important task in a variety of machine learning applications. The data
consist of {x, y} pairs, where y = {y1, . . . , yL} ∈ {0, 1}L is a set of multiple binary labels we seek
to predict and x is a feature vector. In many cases, we are given no structure among the L labels
a-priori, though the labels may be quite correlated.

The most simple multi-label classification approach is to independently predict each label yi using a
separate classifier, also known as the ‘binary relevance model’ (Tsoumakas & Katakis, 2006). This
can perform poorly, particularly when certain labels are rare and the labels are highly-correlated.
Improved training can be achieved using max-margin or ranking losses that directly address the
multi-label structure (Elisseeff & Weston, 2001; Godbole & Sarawagi, 2004; Zhang & Zhou, 2006;
Bucak et al., 2009). Alternatively, model capacity can be controlled, and correlated predictions can
be achieved, by enforcing low-rank structure in the model’s parameters, eg. (Ji & Ye, 2009; Cabral
et al., 2011; Yu et al., 2014; Xu et al., 2014). While the prediction cost of such methods grows
linearly with L, there is a limit to how expressive these low-rank models can be, particularly when
there are strict structural constraints among labels, such as mutual exclusivity and implicature.

Therefore, it is natural to instead approach multi-label classification using structured prediction
methods, which model interactions between prediction labels directly. The drawback of such tech-
niques, however, is that their computational complexity typically either grows super-linearly in
L (Finley & Joachims, 2008; Meshi et al., 2010; Petterson & Caetano, 2011) , or requires practition-
ers to impose strict assumption about the dependencies between labels (Read et al., 2011; Jasinska
& Dembczyski, 2015; Niculescu-Mizil & Abbasnejad, 2015). This prevents scalability to large label
spaces with complex interaction structure.
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In response, this paper contributes a new structured prediction method, discriminative mean field
networks (DMFNs) that scales linearly in L and makes no assumptions a-priori about the relation-
ship between the labels, using a deep neural network to encode an energy function on candidate
outputs. At test time, prediction is performed by approximately minimizing the energy with respect
to the prediction variables using gradient descent, where gradients are obtained by backpropagation
through the deep architecture. The parameters of the network are trained using an adaptation of a
structured SVM (Taskar et al., 2004; Tsochantaridis et al., 2004). The deep network allows us to
model high-arity interactions that would result in unmanageable treewidth if the problem was posed
as a graphical model.

When practitioners choose among structured prediction techniques, they face a tradeoff between
expressivity of the prediction function and algorithmic guarantees of the prediction and learning
procedures. We embrace the first, sacrificing the latter. On a variety of benchmark multi-label clas-
sification tasks, we demonstrate that the expressivity of our deep energy function provides accuracy
improvements against a variety of competitive baselines and discuss the latter considerations. In-
spired by the success of neural networks to automatically discover salient features of the inputs, we
apply DMFNs to automatically discover salient features of the input labels, providing a novel tech-
nique for structure learning. In general, we recommend further exploration of our technique, and its
generalization to additional structured prediction problems.

2 Discriminative Mean-Field Networks

A fully-general way to specify the set of all x → y mappings is to pose y as the solution to a
potentially non-linear combinatorial optimization problem, with parameters dependent on x:

min
y

Ex(y) subject to y ∈ {0, 1}L. (1)

The structured prediction problem (1) could be rendered tractable by assuming certain specific struc-
ture for the ‘energy function’ Ex(), such as a tree-structured undirected graphical model. Instead,
we consider general Ex(), but optimize over a convex relaxation of the constraint set:

min
y

Ex(ȳ) subject to ȳ ∈ [0, 1]L. (2)

In general, Ex(ȳ) may be non-convex, so exactly solving (2) may be intractable. A reasonable
approximate optimization procedure, however, is to minimize (2) via gradient descent, obtaining a
local minimum. Optimization over the set [0, 1]L can be performed using entropic mirror descent
(aka exponentiated gradient) by normalizing over each coordinate (Beck & Teboulle, 2003).

There are no guarantees that our output ȳ values are nearly 0-1. To obtain outputs, we may round.
In other applications, it is sometimes useful to have ‘soft’ predictions, eg. for detection problems,
since we may want to threshold based on confidence.

We refer to the relaxation from y to ȳ as a mean-field formulation of the problem, inspired by such
factorizations in the approximate posterior inference literature, where ȳi would be interpreted as
the marginal probability that yi = 1. We make no such probabilistic assumptions, however. We
use the term ‘discriminative‘ because a primary difference between this work and prior mean-field
techniques is that we directly parametrize the objective that the mean field inference procedure
optimizes, rather than parametrizing a probabilistic model for which inference is intractable, and
inducing a mean-field objective when we seek to perform approximate variational inference.

This approach based on continuous optimization can be performed using black-box access to a gra-
dient subroutine for Ex(ȳ). Therefore, it is natural to parametrize Ex(ȳ) using a deep architecture,
since deep learning libraries provide modular tools to differentiate very complex functions with
sophisticated parameter tying, etc.

3 Network Architecture

We parametrize Ex(ȳ) as a neural network that takes both x and ȳ as inputs and returns a single
number. In the following, we denote matrices in upper case and vectors in lower case. We use g()
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to denote a coordinate-wise non-linearity function. We may use different functions, eg. sigmoid vs.
rectifier, in different places.

The feature network takes x and returns a compressed F -dimensional feature representation. We
employ a simple multi-layer perceptron:

f(x) = g(A2g(A1x)) (3)

The local energy network, ignores any interaction between coordinates of ȳ and scores ȳ as if it was
the sum of the scores of L linear models.

Elocal
x (ȳ) =

L∑

i=1

ȳib
⊤
i f(x) (4)

Here, each bi is an F dimensional vector of parameters for every label. If f(x) = x, then (4)
corresponds to L independent per-label generalized linear models. If f(x) = Cx performs linear
dimensionality reduction, then this energy corresponds to a generalized linear model with a low-rank
weight matrix, a popular technique in multi-label classification (Ji & Ye, 2009; Cabral et al., 2011;
Yu et al., 2014; Xu et al., 2014).

The total energy is the sum of the output of the local energy network and the label energy network,
which scores configurations of ȳ independent of x:

Elabel
x (ȳ) = c⊤2 g(C1ȳ). (5)

We interpret the product C1ȳ as a set of learned linear measurements of the output, which allow
the practitioner to avoid imposing any structure a-priori on the interaction structure between the
labels in y. Computing such a product is linear in L and provides a method of automatic structure
learning. Such measurements also appear in compressed sensing approaches error-correcting code
to multi-label classification (Hsu et al., 2009; Hariharan et al., 2010; Kapoor et al., 2012), which
rely on assumptions about the sparsity of the true labels or prior knowledge about label interactions,
and often do not learn the measurement matrix from data.

Note that the energy only depends on x via the value of f(x). During iterative prediction, we
improve efficiency by precomputing f(x) and not back-propagating through f when differentiating
the energy with respect to ȳ. Also note that certain choices of g result in a convex prediction problem.
In practice, however, we found it was best to select g based on resulting model accuracy rather than
any algorithmic guarantees resulting from convexity.

In future work, it would be natural to use a conditional label energy network, which would be similar
to the label energy network, but concatenates ȳ with the output of the feature network:

Econd
x (ȳ) = d⊤2 g(D1[ȳ; f(x)]) (6)

There are important parallels between the above energy networks and the parametrization of a con-
ditional random field (CRF) (Lafferty et al., 2001; Sutton & McCallum, 2011). For the sake of
notational simplicity, consider a fully-connected pairwise CRF with local potentials that depend on
x, but data-independent pairwise potentials. Let vec() flatten a matrix into a vector. The correspond-
ing label energy net would be:

Ecrf
x (ȳ) = s⊤2 vec(ȳȳ⊤), (7)

In applications with large label spaces,(7) is troublesome in terms of both the statistical efficiency of
parameter estimation and the computational efficiency of prediction because of the quadratic depen-
dence on L. Statistical issues can be mitigated by imposing parameter tying of the CRF potentials,
using a low-rank assumption, eg. (Srikumar & Manning, 2014; Jernite et al., 2015), or using a deep
architecture to map x to a table of CRF potentials (LeCun et al., 2006). The computational concerns
of a pairwise CRF, namely the quadratic dependence on L, can be mitigated by choosing a sparse
graph. This is difficult for practitioners when they do not know the dependencies between labels
a-priori. Furthermore, CRFs pose an even steeper computational burden when modeling high-order
interactions than pairwise relationships between labels, while DMFNs do not.
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4 Learning

In Section 2, we described a technique for producing predictions by performing continuous op-
timization in the space of outputs. Now, we discuss a gradient-based technique for learning the
parameters of the deep architecture Ex(ȳ).

In many structured prediction applications, the practitioner is able to interact with the model in only
two ways: (1) evaluate the model’s energy on a given value of y, and (2) minimize the energy with
respect to the y. This occurs, for example, when predicting combinatorial structures such as bipartite
matchings and graph cuts. A very popular technique in these settings is the structured support vector
machine (SSVM) (Taskar et al., 2004; Tsochantaridis et al., 2004).

If we assume (incorrectly) that our prediction procedure is not subject to optimization errors, then
(1) and (2) apply to our model and it is straightforward to train using an SSVM. This ignores errors
resulting from the potential non-convexity of Ex(ȳ) or the relaxation from y to ȳ. However, such an
assumption is a reasonable way to construct an approximate learning procedure.

Define ∆(yp, yg) to be an error function between a prediction yp and the ground truth yg , such as
the Hamming loss. Let Ψ denote the parameters of Ex. Let [·]

+
= max(0, ·). The SSVM minimizes

the training objective

L(Ψ) =
∑

{xi,yi}

max
y

[∆(yi, y)− Exi
(y) + Exi

(yi)]+ . (8)

Note that the signs in (8) differ from convention because here prediction minimizes Ex(). We mini-
mize our loss with respect to the parameters of the deep architecture Ex using mini-batch stochastic
gradient descent. For a given {xi, yi}, the subgradient of 8 is:

∇ΨL(Ψ) = I [∆(yi, yp)− Exi
(yp) + Exi

(yi) > 0] (−∇ΨExi
(yp) +∇ΨExi

(yi)) (9)

Here, I[·] is an indicator function for a predicate, and yp is the output of loss-augmented inference:

yp = argmin
y

(−∆(yi, y) + Exi
(y)) . (10)

With this, (9) can be computed using back-propagation through Ex.

We perform loss-augmented inference by again using gradient descent on the relaxation ȳ, rather
than performing combinatorial optimization over y. Since ∆ is a discrete function such as the
Hamming loss, we need to approximate it with a differentiable surrogate, such as the squared loss.
Any surrogate loss used for training a feed-forward predictor with gradient descent can be used here.
Note that the objective (8) only considers the energy values of the ground truth and the prediction,
ensuring that they’re separated by a margin, not the actual ground truth and predicted labels (10).
Therefore, we do not round the output of (10) in order to approximate a subgradient of (8); instead,
we evaluate the energy directly on the ȳ obtained by approximately minimizing (10).

Finally, we found that it was useful to initialize the parameters of the feature network by first training
them using a simple binary classification loss, ignoring any interactions between coordinates of y.
For problems with limited training data, we keep the parameters of the feature network fixed when
optimizing the label energy network parameters.

See Section 9 for a discussion of various implementation-level details used to improve the efficiency
of DMFNs in practice.

5 Related Work

Our use of backprogation to perform prediction, by iteratively changing the inputs to the network,
differs from most deep learning applications, where backpropagation is used to update the net-
work parameters. However, such an approach has been useful in a variety of deep learning ap-
plications, including siamese networks (Bromley et al., 1993), methods for generating adversarial
examples (Szegedy et al., 2014; Goodfellow et al., 2014), methods for embedding documents as
dense vectors (Le & Mikolov, 2014), and successful techniques for image generation and texture
synthesis (Mordvintsev et al., 2015; Gatys et al., 2015a,b).

4



Missing Data Yes No

Method SP PR BR LR MLP DMFN

Bibtex 43.9 44.2 37.2 39.0 38.9 41.6

Delicious 29.0 33.3 26.5 35.3 37.0 35.2

Bookmarks 34.6 34.9 30.7 31.0 33.8 34.4

Table 1: Comparison of various methods on 3 standard datasets in terms of F1 measure (larger
is better). The left 2 methods model learning as a missing data problem, and do not assume that
un-annoted labels are negative. The right 4 do no such modeling.

In concurrent work, (Carreira et al., 2015) propose an iterative structured prediction method for
human pose estimation, where Ex(y), doesn’t return a number, but instead an increment ∆(x, y).
Predictions are constructed by incrementally stepping as yt+1 = yt +∆(x, yt). The network for ∆
is trained as a multi-variate regression task, by defining a ground truth trajectory for target values for
intermediate yt. It is unclear how to best generalize this construction of intermediate target values
to our application.

There is a rich body of work on using models with low-rank parameters matrices for multi-label
classification, eg. (Ji & Ye, 2009; Cabral et al., 2011; Yu et al., 2014; Xu et al., 2014). By using
a multi-layer perceptron (MLP) for the feature network with hidden layers of lower dimensionality
than the input, we are able to capture similar low-dimensional structure. In our experiments, an
MLP is a very competitive baseline.

Many successful multi-label classification methods approach learning as a missing data problem.
Here, the training labels y are assumed to be correct only when yi = 1. When yi = 0, this is treated
as missing data, whose values can be imputed using assumptions about the rank (Lin et al., 2014) or
sparsity (Bucak et al., 2011; Agrawal et al., 2013) of the matrix of training labels. It is possible that
some of these insights could be applied to our approach, and we leave this for future work.

A natural alternative to DMFNs for multi-label prediction is to encode Ex(y) as a conditional ran-
dom field (CRF) (Ghamrawi & McCallum, 2005; Finley & Joachims, 2008; Meshi et al., 2010).
CRF inference is exponential in the treewidth of the graph, whereas the measurements employed by
DMFNs can extract information from arbitrarily many labels at once. Consequently, previous appli-
cations of CRFS to multi-label classification have only considered very small label spaces. While
the per-iteration complexity of DMFN prediction is superior to CRFs of comparable expressivity,
it is difficult to analyze its overall cost compared to CRF inference, eg. using belief propagation,
because both perform non-convex optimization.

Training CRFs using an SSVM loss is conceptually more attractive than training DMFNs, however.
In loopy graphical models, it is tractable to solve the LP relaxation of MAP inference, using graph-
cuts or message passing techniques. Solving the LP relaxation, instead of performing exact MAP
inference, in the inner loop of SSVM learning is fairly benign, since it is guaranteed to over-generate
margin violations in (8). A chief concern, in both theory and practice, when training a DMFN with
an SSVM is that the non-convex optimization in the inner loop of learning will find poor local
minima such that no margin violations in (8) are discovered (Kulesza & Pereira, 2007; Finley &
Joachims, 2008). Since parameter updates (9) only occur when margin violations are discovered,
this halts the learning process.

6 Experiments

6.1 Evaluation on Multi-Label Classification Benchmarks

Table 1 compares DMFNs to a variety of high-performing baselines on a selection of standard
multi-label classification tasks (Tsoumakas & Katakis, 2006). Dataset sizes, etc. are described
in Table 4. We compare BR: independent per-label logistic regression, ie. the ‘binary relevance
model’ Tsoumakas & Katakis (2006). MLP: multi-layer perceptron with ReLU non-linearities
trained with per-label logistic loss, ie the ‘feature network’ coupled with the local energy network (4)
of Section 3. LR: the low-rank-weights method of Yu et al. (2014). SP: sparsity-based technique for
handling negative training labels, along the lines of Bucak et al. (2011) and Agrawal et al. (2013).
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# train examples Linear 3-Layer MLP DMFN w/ Linear Local Energy

1.5k 80.0 81.6 91.5

15k 81.8 96.3 96.7

Table 2: Comparing F1 performance on the synthetic task with block-strucutred mutual exclusivity
between labels. Due to its parsimonious parametrization, the DMFN succeeds with limited data.
With more data, the MLP performs comparably to the DMFN, suggesting that even rigid structural
constraints among labels can be predicted in a feed-forward fashion using a sufficiently expressive
architecture.

In the caption of Fig 1 we analyze the ability to automatically the data’s constraint structure by
analyzing the measurement matrix of the DMFN.

Next, in Table 2 we compare: a linear classifier, a 3-Layer ReLU MLP with hidden units of size 64
and 16, and a DMFN with a simple linear local energy network and a 2-layer label energy network
with HardTanh activations and 4 hidden units. Using fewer hidden units in the MLP resulted in
substantially poorer performance. We avoid using a non-linear local energy network in the DMFN
because we want to force the label energy network to capture all interactions between labels, in order
to improve the interpretability of the label measurement matrix for structure learning.

The table provides a variety of illustrative results. First, note that the DMFN consistently outper-
forms the MLP, particularly when training on only 1.5k examples. This is partly because the MLP
has 5x more parameters, and partly because we injected domain knowledge about the constraint
structure when designing the label energy network’s architecture. In the appendix, Figure 1 demon-
strates that we can perform the same structure learning as in Figure 1 on this small training data.
Next, observe that for 15k examples the performance of the MLP and DMFN are comparable . Ini-
tially, we hypothesized that the mutual exclusivity constraints of the labels could not be satisfied
by a feed-forward predictor, and reconciling their interactions would require an iterative procedure.
However, it seems that a large, expressive MLP can learn an accurate predictor when presented with
lots of examples. Going forward, a useful we would like to investigate the parsimony vs. expressiv-
ity tradeoffs of DMFNs and MLPs.

6.3 Analyzing the Effect of Search Errors on SSVM Training

Due to scalability considerations, prior applications of CRFs to multi-label classification have been
restricted to substantially smaller L than those considered in Table 1. In Table 3, we consider
the 14-label yeast dataset (Elisseeff & Weston, 2001), which is the largest label space fit using a
CRF in Finley & Joachims (2008) and Meshi et al. (2010). Finley & Joachims (2008) analyze the
effects of inexact prediction on SSVM training and on test-time prediction. Table 3 considers greedy
prediction, loopy belief propagation, exact prediction using an ILP solver, solving the LP relaxation,
and DMFNs, where the same technique is used at train and test time. All results, besides DMFNs,
are from Finley & Joachims (2008), which also considers cases where different methods are used in
train vs. test. We report hamming error, using 10-fold cross validation.

A key argument of Finley & Joachims (2008) is that SSVM training is more effective when the
train-time inference method will not under-generate margin violations. Here, LBP and DMFN,
which both approximately minimize a non-convex inference objective, have such a vulnerability,
whereas LP does not, since solving the LP relaxation provides a lower bound on the true solution to
the value of (10). Since DMFN performs similarly to EXACT and LP, this suggests that perhaps
the effect of inexact prediction is more benign for DMFNs than for LBP. However, DMFNs exhibit
alternative expressive power to pairwise CRFs, and thus it is difficult to isolate the effect of SSVM
training on accuracy. In future work, we will perform additional experiments to test this.

7 Conclusion and Future Work

Our experiments explore values of L that are very large compared to prior work using structured
prediction for multi-label classification. These are not large-scale classification tasks, however. For-
tunately, there are ample opportunities for further scaling of DMFNs. First, note that the compu-
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GREEDY LBP EXACT LP DMFN

21.6 ± .56 24.3 ± .61 20.23 ± .53 20.49 ± .54 20.88 ± .19

Table 3: Comparing different prediction methods, which are used both during SSVM training and
at test time, using the setup of Finley & Joachims (2008) on Yeast dataset. We report hamming
error (smaller is better). DMFNs perform comparably to prediction methods that provide stronger
guarantees when used in SSVM training.

tational cost of iterative prediction is currently overkill because much of it is wasted on labels that
could have been ruled out using simpler methods. In future work, we will consider a cascade ap-
proach, where a preliminary model is used to filter high-confidence positive and negative predictions.
Training is computationally expensive because we need to run iterative prediction until convergence
for every training example. We would like to leverage methods from the SSVM literature to im-
prove efficiency by interleaving inference and learning, eg. Meshi et al. (2010). Furthermore, since
we perform prediction in parallel on GPUs in minibatches, we are subject to the ‘curse of the last
reducer,’ where unnecessary gradient computation is performed on easy examples while we wait for
inference on difficult examples to converge. This can be mitigated using smarter low-level code.
Alternatively, we can explore special-case prediction procedures that exploit the piecewise-linear
nature of energy networks with ReLU activations.

DMFNs parametrize an x → y mapping implicitly, through an energy function and a prediction-time
optimization procedure. For the sake of prediction speed, it would be much more attractive if such
a mapping was specified in a purely feed-forward manner. It is unclear if such a mapping exists,
however, when there are tight dependencies between labels, such as mutual exclusivity, or if they
need to be reconciled by ‘inference.’ Lately, iterative variational approaches for posterior inference
have been replaced by feed-forward ‘inference networks’ that directly predict the parameters of a
variational distribution(Kingma & Welling, 2014; Rezende et al., 2014). It would be very useful
overall to understand the strengths and limitations of iterative vs. feed-forward procedures, as this
would illuminate problems where the iterative prediction of DMFNs will be most effective compared
to feed-forward approaches.

Finally, we found that DMFN predictions were nearly always spiked at either 0 or 1, despite opti-
mizing a non-convex energy over the set [0, 1]. We expect that this results from the energy function
being fit to data that is always 0 or 1. We would like to further develop DMFN architectures that fit
the data well and also encourage integral predictions in practice.
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9 Appendix

9.1 Details

Various tricks of the trade from the deep learning literature, such as momentum, can be applied
to improve the prediction-time optimization performance of our entropic mirror descent approach
described in Section 2, which are particularly important because Ex(ȳ) is generally non-convex.

We perform inference in minibatches in parallel on GPUs.

When ‘soft’ predictions are useful, it can be useful to augment Ex(ȳ) with an extra term for the
entropy of ȳ. This can be handled at essentially no computational cost, by simply normalizing the
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