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ABSTRACT 

Voice-activated intelligent assistants, such as Siri, Google Now, 
and Cortana, are prevalent on mobile devices. However, it is chal-
lenging to evaluate them due to the varied and evolving number of 
tasks supported, e.g., voice command, web search, and chat. Since 
each task may have its own procedure and a unique form of correct 
answers, it is expensive to evaluate each task individually. This pa-
per is the first attempt to solve this challenge. We develop con-
sistent and automatic approaches that can evaluate different tasks 
in voice-activated intelligent assistants. We use implicit feedback 
from users to predict whether users are satisfied with the intelligent 
assistant as well as its components, i.e., speech recognition and in-
tent classification. Using this approach, we can potentially evaluate 
and compare different tasks within and across intelligent assistants 
according to the predicted user satisfaction rates. Our approach is 
characterized by an automatic scheme of categorizing user-system 
interaction into task-independent dialog actions, e.g., the user is 
commanding, or making a selection, or confirming with the system. 
We use the action sequence in a session to predict user satisfaction 
and the quality of speech recognition and intent classification. We 
also incorporate other features to further improve our approach, in-
cluding features derived from previous work on web search satis-
faction prediction, and those utilizing acoustic characteristics of 
voice requests. We evaluate our approach using data collected from 
a user study. Results show our approach can accurately identify sat-
isfactory and unsatisfactory sessions. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User Interfaces 
– evaluation/methodology, interaction styles, voice I/O. 

Keywords 

Voice-activated intelligent assistant, evaluation, user experience, 
mobile search, spoken dialog system. 

1. INTRODUCTION 
Intelligent assistants are becoming a prevalent feature on mobile 
devices. They provide voice control and feedback to mobile device 
functions (e.g., making phone calls, calendar management, finding 
places). Users can also search the web or even chat with intelligent 
assistants. While these novel applications are useful and attractive 
for users, it is challenging to evaluate and compare them due to the 
large variability of tasks. 

Evaluation is a central component of many related applications, 
e.g., search engines, Q&A systems, and recommendation systems. 

These applications are usually evaluated by comparing system-gen-
erated answers with “correct” answers labeled by human annota-
tors. For example, in web search, we annotate relevant webpages 
and evaluate using metrics such as mean average precision (MAP) 
and normalized discounted cumulative gain (nDCG) [14]. 

However, intelligent assistants differ from these applications in 
that they can involve a wide variety of tasks, ranging from making 
phone calls and managing calendars, to finding places and answers 
to general questions, and web search. These tasks have different 
forms of “correct” answers. It is expensive to evaluate each task 
separately using different human judgment and metrics. It is also 
difficult to use one single setup to evaluate all tasks. In addition, 
the tasks performed can be personal in nature and the performance 
of the system depends heavily on users. These factors make it chal-
lenging to conduct manual ground-truth-based evaluation. 

To solve these challenges, we adopt approaches similar to recent 
studies of user satisfaction prediction in web search [1, 3, 6, 7, 17, 
32]. These studies developed alternative evaluation approaches by 
finding and using correlation between explicit ratings of user expe-
rience and implicit behavioral signals such as click and dwell time 
[4, 7]. However, we cannot simply apply user behavior signals in 
web search to evaluate intelligent assistants due to the wider range 
of tasks. These tasks may involve different user intents, diverse top-
ics, and distinct user interaction modes. For example, the process 
of making a phone call, or navigating to a place, involves a dialog 
style conversation between user and system, with user requests and 
system responses very different than those in web search. In addi-
tion, lots of voice interaction exist in intelligent assistants, and it is 
important to use voice signal to assess user experience. 

We introduce a model for evaluating user experience in voice-
activated intelligent assistants. We consider satisfaction as the ma-
jor indicator of user experience because our study shows that it is 
consistently correlated with changes in user interests towards the 
products. Our model predicts whether the user has satisfactory or 
unsatisfactory experience with an intelligent assistant based on user 
interaction patterns. Once the model has been trained, it can evalu-
ate real traffic of intelligent assistants without human judgments of 
correct answers for tasks. This makes it a useful and cheap evalua-
tion approach for companies, who have abundant user traffic and 
logs. Our model includes a sub-model for automatically classifying 
user-system interaction into dialog actions, a Markov model over 
action transitions, as well as features related to requests, responses, 
clicks, and those using acoustic signals. 

Our contributions can be summarized as follows: 

• An accurate model for predicting user satisfaction with an intel-
ligent assistant and its components, i.e., speech recognition and 
intent classification. 

• A scheme of categorizing user-system interaction into task-inde-
pendent dialog actions, and a model to automatically map differ-
ent actions to this scheme. 

• Analysis of user behavior and patterns indicating user experience 
in intelligent assistants. 
The rest of the article introduces our approaches and findings. 

 
 
 
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the au-
thor’s site if the Material is used in electronic media. 
WWW 2015, May 18–22, 2015, Florence, Italy. 
ACM 978-1-4503-3469-3/15/05. 

http://dx.doi.org/10.1145/2736277.2741669 



2. RELATED WORK 
There are a number of areas of related work relevant to the research 
described in this paper. These include (1) methods and metrics for 
the evaluation of search systems, (2) inferring satisfaction from ob-
served search behavior and (3) dialog act modeling and classifica-
tion in conversational speech. We cover these in turn in this section. 

User behavior modeling has been used extensively for evaluating 
search systems [1, 4, 6, 7]. Traditionally search system have been 
evaluated using retrieval metrics such as MAP and nDCG [14], 
where a collection of documents, queries and human labeled rele-
vance judgments are used to evaluate search system performance. 
These metrics are expensive to collect and potentially noisy, given 
that third-party judges have limited knowledge of the individual 
user’s intent. Additionally, these metrics are query-based. Previous 
research has shown that search tasks often contain multiple queries 
related to the same information need [7]. Unfortunately the connec-
tions between these queries are ignored by these metrics. Session-
based DCG (sDCG) [15] does consider the session-context, but still 
requires manual relevance judgments. 

Another line of research has focused on using implicit feedback 
from user behavior to evaluate search engine. These methods have 
lower cost, are more scalable, and sourced from the actual users.  

Early research on implicit feedback [4] used an instrumented 
browser to determine if there was an association between explicit 
ratings of user satisfaction and implicit measures of user interest 
and identified the measures that were strongly associated with user 
satisfaction. Huffman and Hochster [13] found a strong correlation 
with session satisfaction using a linear model encompassing the rel-
evance of the first three results returned for the first query in a 
search task, whether the information need was navigational, and the 
number of events in the session. Hassan et al. [7] developed models 
of user behavior to accurately estimate search success using action 
sequences of user behavior and showed that this yields better per-
formance compared to models derived from the query-URL rele-
vance of top-ranked results for the first query in a task. Follow-up 
studies showed that satisfaction ratings can be collected in-situ 
from users [9] and that action sequence models can be learned in a 
semi-supervised manner from both labeled and unlabeled data [6]. 
Ageev and colleagues [1] augmented this approach with additional 
search features. They also used a game-like strategy for collecting 
labeled data by asking participants to find answers to questions us-
ing web search. All these methods focus on analyzing user behavior 
when interacting with traditional search systems. 

In this work, we extend this line of work by presenting the first 
study, to the best of our knowledge, of user behavior patterns when 
interacting with intelligent assistants. We study the action se-
quences performed by the users and jointly model them with the 
actions performed by the system to predict user satisfaction. We 
also study features specifically related to voice input and propose 
methods to analyze the root cause of dissatisfaction. 

Perhaps the biggest difference between traditional web search 
and intelligent assistants is their conversational nature. In many 
scenarios, intelligent assistants can refer to the previous requests to 
understand the user better; e.g. “show me weather in mountain 
view” followed by “how about in palo alto”, or “Italian restaurants 
nearby” and “which ones are 4-stars or above”. Therefore spoken 
dialog systems research is closely related to intelligent assistants. 
Spoken dialog systems interpret and respond to spoken commands 
by implementing dialog strategies [2], and the field has seen steady 
progress over the past two decades [29]. Since they use speech as 
the primary (or only) form of user communication, they provide 
error correction mechanisms to account for the potential errors in 
the automatic speech recognizer (ASR) output. Recently, partially 
observable Markov decision Processes (POMDP) has established 

itself as a solid foundation for managing dialogues, and a compre-
hensive review can be found in [33]. 

Since they also support other forms of interactions, intelligent 
assistants differ from traditional spoken dialog systems. In addition 
to voice system response, intelligent assistants provide answers or 
options in the display, and users can type in the requests and select 
a displayed result or option. In this sense, intelligent assistants are 
related to multi-modal conversational systems [11, 20, 30]. 

Note that many different taxonomies of dialog acts have been 
proposed [28]. We do not intend here to propose a new one, but 
rather to model user and system interaction with the goal of pre-
dicting user satisfaction. Our model of system interaction and user 
is designed independently from any dialog model the system uses. 
Hence, it is independent of any specific implementation. In contrast 
with work on learning dialog model transitions [27] we do not at-
tempt to model the most likely dialog sequence, but to use the dia-
log sequence to model user satisfaction. Our work differs from pre-
vious work in offline evaluation of dialog systems [31], as we do 
not require manual transcription of speech, and thus once trained, 
our models can be run online, at-scale, evaluating voice assistants 
in an automated, unsupervised fashion. 

3. INTELLIGENT ASSISTANTS 
Intelligent assistants are emerging and evolving applications lack-
ing a precise definition. Related products are usually referred to as 
“intelligent personal assistants”, “mobile assistant”, “virtual per-
sonal assistant”, “voice assistant” etc. Also it is unclear to what 
ends and how frequently people use them. To clarify the goal of 
evaluation, we need to first study their functionalities and the sce-
narios they support. This section studies these questions. Due to too 
many related applications, we restrict our scope as follows: 

1. We only consider intelligent assistants on mobile devices. 
2. We do not consider proactive suggestions based on personal 

information, such as displaying flight status automatically if the 
user received an email about it, or showing traffic and time-to-leave 
reminders based on daily commute patterns. Evaluating this func-
tionality is outside our scope since it requires long term studies to 
collect personal information from users’ emails, GPS signal, etc. 

3.1 Functionality 
We picked five representative intelligent assistant products, includ-
ing Apple Siri, Google Now, Microsoft Cortana, Samsung S Voice, 
and Nuance Dragon. After extensive usage of these applications, 
we summarize three major functionalities of intelligent assistants: 

1. Device+dialog. This includes using voice commands to access 
device functions and other tasks using dialog style interaction. For 
example, users can say “call James” to make a phone call, or ask 
“do I have any meetings tomorrow?” to check calendars directly.  
Rich information dialogs, such as “weather in Florence” to check 
the weather, are also included here. All the five products provide 
this functionality, but the specific supported features may differ. 

2. Web search. All the five products support web search using 
voice input. Apart from Siri, the other four support a combination 
of voice and text input. Also, it is usually the last resort to handle 
user requests: if the intelligent assistant fails to understand a re-
quest, it will handle it as a query for web search. 

3. Chat. Users can talk to intelligent assistants for fun. Many in-
telligent assistants have pre-defined interesting responses for pop-
ular user questions. For example, if the user asks Cortana “who is 
your father”, the response could be “technically speaking, that’d be 
Bill Gates. No big deal.” All products apart from Google Now sup-
port chat. 

Another angle of comparison is the types of input they support. 
All five products support voice input, and all except Siri support 
text input. 



3.2 Usage Analysis 
We further study the scenarios of using intelligent assistants. We 
limit our scope to Cortana due to data access. We randomly sam-
pled 70K sessions from Cortana’s user logs during April, 2014. 
Note that during this time-range, Cortana was demonstrated for the 
first time, was not yet commercially available, and early-adopter 
developers were trying out Cortana to explore the functionality.  
Here a session refers to a sequence of requests from the same user, 
in which the interval of two adjacent requests does not exceed 30 
minutes. This setting is similar to many previous web search studies 
[10, 23]. We annotated the underlying tasks of the user requests and 
summarized them into several domains. Web search and chat are 
two open domains. We also categorize requests to device+dialog 
functions into the following topics: 

• Device control, e.g. launch apps, and play music. 

• Communication, e.g. make phone calls, send text message. 

• Location, i.e., find or navigate to certain places. 

• Calendar, e.g. check calendar, create reminder, and set alarm. 

• Weather, i.e., check weather conditions. 

• Other: all other supported requests, e.g. taking notes. 
Table 1 shows the five most frequent requests and proportion of 

requests for each domain in the sampled Cortana log (we do not 
show examples of web search and other requests due to limited 
space). About half of the requests (47.9%) are accessing device+di-
alog functions. Web search and chat take 30.7% and 21.4% respec-
tively. In the following discussion, we also refer to them as “de-
vice+dialog function tasks”, “web search tasks”, and “chat tasks”.  

Note that the domains of requests and their popularity largely de-
pend on the features supported by specific intelligent assistants and 
the way they are implemented. Therefore, the statistics in Table 1 
may not be generalized to other intelligent assistants. Besides, they 
are also not necessarily representative of Cortana’s requests today 
because the log is sampled from the very early period when Cortana 
was first put to public test. However, this is the best we can access 
at the time of the study. Despite the limitations, these domains and 
topics are still representative because all the five products support 
them (except that Google Now does not support chat). Therefore, 
our approach should cover these tasks and domains. 

3.3 Goal of Evaluation 
Based on the analysis in this section, we come to the following 
goals of evaluating intelligent assistants. 

1. The evaluation approach should be able to work well on the 
three major tasks as well as the five popular domains. 

2. We should evaluate not only the intelligent assistant as a 
whole, but also its important components separately. Intelligent as-
sistants need to first recognize user requests (may include voice in-
put) and then classify the intent (e.g., identify task and context in-
formation). We consider two components in this paper, i.e., auto-
matic speech recognition (ASR) and intent classification. 

3. The evaluation measure should be generic and task-independ-
ent. This is important because, unlike many applications, it is diffi-
cult and expensive to collect ground truth data to evaluate intelli-
gent assistants, since they do not have a consistent form of correct 

answers for different tasks. For example, for “call James”, the cor-
rect answer is to understand the intent and the correct person, but 
for “remind me for a meeting tomorrow at 3pm”, the correct answer 
is the intent and the event information (e.g., theme and time). With-
out a task-independent evaluation measure, we would need to col-
lect ground truth data for each scenario, which is expensive. 

To make the approach task-independent, we evaluate intelligent 
assistants by solving the following classification problem: 

Given user interaction information of a session, can we identify 

whether the user is satisfied or not with the intelligent assistant (or 

its speech recognition and intent classification)? 

Using this approach, we can evaluate and compare intelligent as-
sistants by the predicted percentage of satisfactory sessions. This 
makes the evaluation measure task-independent. As Section 6 will 
show, user satisfaction is a user experience measure with consistent 
correlation with changes in user interests towards the product. We 
conduct a user study to collect user behavior and satisfaction ratings 
in intelligent assistant tasks, which will be introduced in Section 4. 

4. USER STUDY 
This section introduces a user experiment to collect user behavior 
and ratings in different intelligent assistant tasks. 

4.1 Participants 
We recruited 60 participants through emails sent to a mailing list of 
an IT company located in the United States. All participants were 
college or graduate students interning at the company. Their aver-
age age was 22.97 (SD=3.45). Among these participants, 35% were 
female and 58.3% were native English speakers. We asked the par-
ticipants to rate their spoken English proficiency on a 5-point Likert 
scale (5 means the highest). For those who are not English native 
speakers, the average rating was 4.24 (SD=0.66). They were reim-
bursed $10 gift card for participating in a half-hour experiment. 

4.2 Tasks 
Each participant finished 10 tasks, including: 4 web search tasks, 1 
chat task, and 5 device+dialog function tasks (1 for each of the five 
domains). This makes the distribution of tasks and domains similar 
to those shown in Table 1. In total we developed 12 web search 
tasks, 15 device+dialog function tasks (3 for each domain), and 1 
chat task. We rotated the assignment of web search tasks and de-
vice+dialog function tasks such that 20 participants worked on each 
unique task. The chat task is usually open-ended, so we assigned 
the same chat task (presented in Table 2) to all participants. We also 
rotated task sequence using a Latin Square. Table 2 shows exam-
ples of task descriptions. Detailed descriptions of tasks can be ac-
cessed at www.cs.umass.edu/~jpjiang/cortana/. 

Table 1. Top 5 requests (speech recognition results) and proportion of each domain in a sample of Cortana user logs in April, 2014. 

Web search and other requests takes 30.7% and 0.6% of the data (do not show examples of requests here due to limited space). 

Chat 

(21.4%) 

Device Control 

(13.3%) 

Communication 

(12.3%) 

Location 

(9.2%) 

Calendar 

(8.7%) 

Weather 

(3.8%) 

tell me a joke play music call where am I set alarm in Celsius 

do you like clippy play call mom find a library show my alarms do I need a coat 

hello open facebook call my wife I’m hungry wake me up what’s the weather 

sing me a song open whatsapp text where I am wake me up in twenty minutes what’s the weather like 

what’s your name stop music call my mom take me home remind me what’s the weather today 

Table 2. Examples of task descriptions. 

Type Description 

Device-
Dialog 

Function 

You are stuck in very heavy traffic and it seems you will be late for 
your meeting with James. Use Cortana to send James a text message 
explaining the situation (James is a contact stored in your phone). 

Web 
Search 

Check the exchange rate between US dollars and Australian dollars. 

Chat 
Talk to Cortana as if she is a real person. Try to make a conversa-
tion with her for about 2 minutes. 

 



4.3 Device and Environment 
Participants worked on the tasks using a Windows phone with the 
latest version of Windows Phone 8.1 and Cortana installed. If the 
task needed to access some device resources or functions, they were 
installed to make sure users would not encounter problems. The ex-
periment was conducted in a quiet room, so that we can reduce the 
disturbance of environment noise. Although real application envi-
ronment often involves noise and interruption, we eliminated those 
factors to simplify the experiment. 

4.4 Procedure 
The participants were first asked to watch a video introducing Cor-
tana (about 3 minutes long) and to complete a background survey. 
Then, they worked on a training task and 10 formal tasks. We in-
structed them that they could stop a task when they had accom-
plished the goal or if they became frustrated and wanted to give up. 
Finally, they answered a feedback survey and a short interview. The 
total experiment time was about 30 minutes. 

For each task, we first verbally described the task scenario to the 
participants. The participants were not shown the task description 
while they are working on the task, because in an earlier pilot study, 
many participants directly read the sentences shown in task descrip-
tions as requests. To encourage them to use free form commands 
and queries, we switched to verbal descriptions. When the partici-
pants worked on the task, they were allowed to issue both voice and 
text requests, reformulate requests, and interact with results (e.g., 
tapping a result to read more details). After terminating a task, they 
answered questions regarding their experience in this task session. 
In this paper, we mainly used their answers to the following three 
questions: 
- How satisfied are you with your experience in this task? 
- How well did Cortana recognize what you said? 
- How well did Cortana understand your intent? 

Responses to the three questions are referred to as ratings of user 
satisfaction, ASR quality, and intent classification quality. We did 
not specifically instruct participants the definition of intent classi-
fication, and the ratings are purely based on user’s own understand-
ing. Our goal is to predict these ratings in order to evaluate intelli-
gent assistants. Participants answered these questions using a 5-
point Likert scale (5 is the best and 1 the worst). In addition, we 
collected user ratings of frustration, goal success, and effort in each 
task. We also asked participants to report their interests in using 
Cortana twice: before they started with any task, and after they fin-
ished all the tasks. This helps us understand the relationship be-
tween user experience in individual tasks and changes in user inter-
ests towards an intelligent assistant product over time. 

5. METHOD 
This section introduces our approach. We assume the existence of 
a classifier that can accurately classify user sessions into three task 
types, i.e., device+dialog function, web search, and chat tasks. This 
assumption is reasonable because such classifiers have been readily 
implemented in most intelligent assistant products (such that they 

can handle requests for different types of tasks). We do not discuss 
how to implement such a classifier in this paper, because we focus 
on the evaluation models for different tasks. We train separate eval-
uation models for each task due to large task variability. When eval-
uating a session, we first classify its task type and then adopt the 
task’s evaluation model to predict user satisfaction and the quality 
of ASR and intent classification. 

This section introduces approaches and features for evaluating 
intelligent assistants. First, we introduce a way of characterizing 
user interaction in device+dialog function tasks. We classify re-
quests and responses into action types and use action sequence to 
predict user satisfaction. Then, we introduce generic features for all 
tasks. We put more focus on device+dialog function tasks because 
few previous work addressed the challenge. 

5.1 User and System Action 
In device+dialog function tasks, users interact with intelligent as-
sistant in a way similar to spoken dialog systems. A task session 
includes one to many rounds of user-system interactions. In each 
round the user issues a request and the system gives a response. 

Table 3 shows an example of a satisfactory (SAT) device+dialog 
function task session. The user completed the task without any ob-
stacles. In contrast, the system makes mistakes in speech recogni-
tion and/or intent classification in dissatisfactory (DSAT) sessions. 
It requires extra user interaction to correct the mistakes. Table 4 
shows an example. The system did not recognize the user request 
in the second round and gave a useless suggestion for web search. 
It costs the user two more rounds to correct the error. 

We categorize requests and responses into different types. We 
refer to these types as action types. Table 3 and Table 4 also show 
annotated action types. These action types are high level character-
ization of requests and responses ignoring the detailed contents. For 
example, we annotate both “Cortana call James” and “Where is the 
nearest pharmacy” as “Command”, i.e., commanding the intelligent 
assistant to execute certain operations, despite the details of the op-
eration are different. 

These actions may indicate the status of the session. For example, 
when the system asks the user to confirm an operation (e.g. to call 
someone), a “Yes” action conveys the user’s positive attitude to the 
system’s response in the previous round and is indicative of SAT 
sessions, and vice versa. We show more analysis in Section 7. 

Following previous work on dialog acts modeling [27], we de-
fine the following system (intelligent assistant) actions: 
- Execute: executes an operation in this round. 
- Confirm: asks the user whether or not to execute an operation. 
- Question: asks the user a question for specific information. 
- Option: provides a list of options and wait for user selection. 
- WebSearch: searches the web using request content. 
- Error: reports system error to the user, e.g., cannot understand 

the request, cannot find an answer, network error, etc. 
- NoAction: does nothing and returns to the default interface. In 

Cortana, it happens when user declines to execute an operation. 
And the following user actions: 

Table 3. An example of user requests, system responses, and annotated action types in a satisfactory (SAT) session. 

# User Request System Response User Action System Action 

1 “Cortana call James” “Sure, call James Smith mobile, is that right?” Command Confirm 

2 “Yes” “Calling James Smith, mobile.” [call the contact] Yes Execute 

Table 4. An example of user requests, system responses, and annotated action types in a dissatisfactory (DSAT) session. 

# User Request System Response User Action System Action 

1 “Where is the nearest pharmacy” “Here are 8 pharmacies near you.” [show options on the screen] Command Option 

2 “Send me the directions to block sponsee” 
(Show me the directions to Clark’s pharmacy) 

“Sorry, I couldn’t find anything for ‘Send me the directions to 
block sponsee.’ Do you wanna search the web for it?” 

Select Confirm 

3 “No” “Here are 8 pharmacies near you.” [show options on the screen] No Option 

4 “Directions to Clark’s pharmacy” “OK, getting you directions to Clark’s Pharmacy.” [navigation] Select Execute 

 



- Command: commands the system to perform an operation. 
- Yes/No: agrees or declines the system’s confirmation. 
- Answer: answers the system’s questions. 
- Select: selects an option provided by the system. 

Here we define system actions based on the actual operation of 
the intelligent assistants in each round. For a specific product, one 
can simply define a rule to map operations to action types. In con-
trast, we only know limited content of user request. We need a clas-
sifier to identify user action types. For this purpose, we annotate the 
collected data and train a classifier for user action types using the 
following features: 
- QLength: the number of words in the user request (ASR result). 

QLength is useful because we notice that “Yes/No” and “Select” 
are usually short, while “Command” and “Answer” are longer. 

- HasWordX: whether the request (ASR result) includes a spe-
cific word X. We handcraft a list of “Yes” and “No” words for 
Cortana. The “Yes” words include: yes, yep, right, yeah, send, 
and call. The “No” words include: no, nope, and cancel. 

- PercWordX: the percentage of a specific word X in the request. 
We use the “Yes” and “No” word list in PercWordX features. 

- IsPrevActionX and IsNextActionX: whether the previous/next 
system action is X. This feature is important because user action 
is usually triggered by the previous system action, or triggers the 
next system action. 
Note that different intelligent assistants may implement these ac-

tions differently. For example, they can notify the user a list of op-
tions by voice, or displaying on the screen, or both. When asking 
for user’s confirmation of an operation, some assistants consider 
the user as agreeing with the operation if the user does not respond 
after a few seconds. Similarly, user behavior for each action may 
be distinct in different system. Therefore, it requires different rules 
and classifiers to predict action types in different systems. Whereas 
we believe these action types are generalizable to other products. 

5.2 Modeling Action Patterns 
We infer the quality of a session by modeling action patterns in the 
session. We assume that SAT and DSAT sessions (or sessions with 
SAT or DSAT ASR/intent classification quality) have different ac-
tion patterns, e.g., “No” may be more common in DSAT sessions. 

We represent a session S as a series of user and system actions, 
i.e., S{u1, s1, … , un, sn}, where ui and si are the user and system 
action in the ith round. We model action pattern using a 3-gram 
model, i.e., each action depends on previous two actions. We also 
add START and END to the beginning and the end of a session. 

Let L be a target session quality label (e.g., SAT or DSAT). The 
evaluation problem can be solved by inferring the most likely label 
L for an observed action sequence S, as shown in Equation (1). We 
use θL for the 3-gram action model of sessions with label L. Then, 
we can calculate P(S|L) as Equation(2), where u0 and s0 are START 
and un+1 and sn+1 are END. Let (s, u, v) be three successive actions, 
we estimate P(v|s, u) from the dataset as Equation(3), where: c(s, u, 
v) is the raw count of (s, u, v); P(v|u) and P(v) are the bigram and 
unigram probabilities of v; α and β are smoothing parameters. 
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The action sequence model itself can evaluate a session. We can 
use it with or without the prior probability factor P(L). We found 
that using P(L) can lead to better accuracy while dropping P(L) can 
result in better F-measure. To combine with other features, we use 

the log probability of a session’s action sequence as features, i.e., 
log P(S|SAT), log P(S|DSAT), log P(SAT|S), and log P(DSAT|S). 

5.3 Generic Features 
In addition to action sequence features, we introduce other features 
in this section. Most of the features are applicable to all three tasks, 
with only a few exceptions. Some of these features (e.g., click fea-
tures) come from previous studies of user satisfaction and success 
in web search. Besides, we also adopt acoustic features due to the 
prevalence of voice interaction in intelligent assistants. 

5.3.1 Click Features 
In web search, click and click dwell time are useful indicators of 
document relevance [21, 22] as well as query and session level 
search success [1, 6, 7, 17, 32]. Here “click” means tapping a result 
item. The item can be a search result in web search tasks or in other 
types in device+dialog function tasks (e.g., a best answer from a list 
of candidates). Click features are not applicable to chat tasks. We 
include the following click features: 

 

5.3.2 Request Features 
Previous studies found some query characteristics are useful for 
predicting search success or difficulty. We use similar request fea-
tures here. We first consider request type in a session. Shokouhi et 
al. [26] found that switching from voice to text queries correlates 
with low search quality in mobile search. Studies also found in-
creased usage of query suggestions in difficult topics [24] and com-
plex tasks [18]. Therefore, we use the number of requests by type 
(voice, text, suggestion) and voice-to-text switch as features. 

Request content may also indicate user experience. For example: 
Hassan et al. found that high similarity of queries is an indicator of 
unsuccessful task [8, 10]; Jiang et al. [19] found that user may re-
peat a voice query if ASR error happens, and long queries are more 
likely to have ASR errors. We use request length and the similarity 
of adjacent requests (by ASR results) as features. 

Another information we make use of is request dwell time. It is 
calculated as the time interval of adjacent requests. We consider 
average request dwell time as well as the number of requests with 
dwell time longer or shorter than certain thresholds. 

 

5.3.3 Response Features 
We consider responses of a specific type as features. In device+di-
alog function tasks and chat tasks, we use the number and percent-
age of voice responses. In web search tasks, we use the number and 
percentage of responses the intelligent assistant can provide instant 
answers as features. This is because in some tasks, user may prefer 
certain types of responses. For example, users may be frustrated if 
the intelligent assistant cannot respond them in voice in device+di-
alog tasks and chat tasks. Similarly, users may prefer responses of 
instant answers when searching for factual questions. 

#click Number of clicks per session and per request. 

#click longer or 

shorter than t 

Number of clicks by dwell time. We count clicks 
longer than 30s and those shorter than 15s. 

rank_click Average rank of clicks. 

click_dwelltime Average click dwell time. 

time_firstclick Average time to the first click of a request. 

 

#request Total number of requests in a session. 

#request_type Number of requests of a specific type. 

#request longer 

or shorter than t 

Number of requests whose dwell time is longer or shorter 
than t (set to 30s, 50s, or 100s). 

request_length Average request length (by word). 

request_dwell Average request dwell time. 

#voice2text Number of transition from voice to text request. 

edit_distance Average edit distance of adjacent requests. 

#common_word Average number of common words in adjacent requests. 

#common_req Number of adjacent requests with the same ASR output. 



We also incorporate features considering the content of response. 
We use the Jaccard similarity of results between adjacent responses 
as a feature. This helps us measure request similarity at result level. 
In addition, we consider the time to achieve the first execute action 
in the session in device+dialog function tasks. Intuitively, if it re-
quires many rounds of interaction to command an intelligent assis-
tant, the task session is unlikely satisfactory. 

 

5.3.4 Acoustic Features 
Since intelligent assistant involves lots of voice interaction, we also 
adopt acoustic features as a component of our approach. When en-
countering ASR errors, user may slow down the speed of speaking 
in requests [16, 19]. To detect such behavior, we compare the 
speaking rate in adjacent voice requests. The speaking rate is meas-
ured as the number of words (in ASR output) divided by the dura-
tion of the request. We measure the number and percentage of re-
quests with speaking rate below a certain ratio as compared to the 
previous request. We set the ratio to 0.25, 0.5, and 0.75. 

The second acoustic feature is the similarity of metaphone code 
between adjacent requests. Metaphone [25] is a way of indexing 
words by their pronunciation and it can help us detect ASR errors 
and enhance the accuracy of request similarity measures. For ex-
ample, a request “WhatsApp” may be incorrectly recognized as 
“what’s up”, but their Metaphone codes are both “WTSP”. In such 
cases, this phonetic similarity feature helps us detect repeated or 
similar requests that are missed by normal request similarity fea-
tures (based on ASR outputs). 

Besides, we adopt Huang et al.’s method [12] to measure ASR 
confidence and use the confidence of the voice requests as a feature. 
In short, ASR confidence gets higher when both acoustic and lan-
guage model scores of the selected recognition hypothesis are sig-
nificantly higher than the remaining hypotheses. 

 

6. DATA 
We collected information of 60 users in 600 sessions. We use the 
dataset to test how well our approach can correctly evaluate an in-
telligent assistant and its components in different types of tasks. 
Table 5 shows some data statistics. We consider the evaluation as 
binary classification and divide the sessions into binary classes by 
user ratings. Due to the large difference of rating distributions, we 
set the thresholds differently for each task type and rating type such 
that we can balance the proportion of positive and negative classes.  

We compute the correlation of user satisfaction with the quality 
of ASR and intent classification. Results in Table 5 suggest that the 
quality of the two components do affect overall user satisfaction. 
Comparing two components, satisfaction relies more on the quality 
of intent classification but less on ASR quality. The degree of cor-
relation also differs a lot in three tasks. We observed a moderate 
correlation (r=0.54) in device function tasks, but a weaker one in 
web search tasks (r=0.37), and an insignificant correlation in chat 
tasks (p≥0.05). This indicates different types of tasks rely differ-
ently on the two components. This also confirms our objective that 
it is necessary to evaluate not only the overall experience, but also 
each components in order to diagnose the system in deeper details. 

In this paper, we use user satisfaction as measure for the overall 
quality of a session. There are other user-based measures, such as 

goal success [6, 7] and user frustration [3]. We do not know much 
about their differences and validity. Table 5 shows the correlation 
of satisfaction with frustration, goal success, and effort in three task 
types. Satisfaction is positively correlated with goal success, and 
negatively correlated with frustration and effort. The correlations 
are rather strong, showing these measures are related to each other. 

We further examine how task-level user experience relate to the 
changes of user interests in using the product. We measured user 
interests in using Cortana twice: at the beginning and the end of the 
user study. We divide the users into groups with increased, equal, 
or decreased interests. Figure 1 shows that three groups have sig-
nificantly different task-level satisfaction (p<0.05). But we only ob-
served significant differences in frustration, goal success, and effort 
between users with decreased interests and others. This indicates 
that satisfaction is a task-level measure consistently correlate to the 
changes of long term user adoption, but other three measures may 
only correlate with decreased user interests. This confirms that we 
should adopt user satisfaction as the measure for session quality. 

7. DEVICE+DIALOG FUNCTION TASKS 
This section evaluates our model in device+dialog function tasks. 
We first evaluate the action sequence model described in Section 
5.2. Then, we evaluate other features. In all experiments, we gen-
erate 10 random divisions of the data and perform 10-fold cross 
validation on each division. This generates results for 100 folds in 
total. We report the mean value of F-measure and accuracy in the 
100 folds. We test for significant difference using Welch t-test. 

7.1 Action Type Classification 
We first evaluate how well we can predict user action type. We 
manually labeled all the user actions to train a classifier and evalu-
ate its accuracy. We use multi-class logistic regression for classifi-
cation. Table 6 reports the effectiveness of the classifier. It shows 
that we can achieve satisfactory performance in predicting user ac-
tion types. The average F-measure is as high as about 0.9. Compar-
atively it is less effective in identifying the “No” and “Select” ac-
tions (but it still has over 0.8 F-measure). This is probably due to 
there is limited data (only 2.8%) to train models for “No” and we 
did not make a word list for “Select”. This shows that, provided 

instant_answer/ 

voice_response 

Number and percentage of responses provide in-
stant answers/voice responses to the user. 

jaccard_result Jaccard similarity of results or items. 

first_execute Time (number of rounds) to the first “execute”. 

asr_confidence Voice request speech recognition confidence score. 

metaphone_sim Metaphone code similarity between adjacent requests. 

slow_request The number and percentage of requests with slower 
speaking rates comparing to previous requests. 

 

Table 5. Some statistics of the collected user study data. 

Statistics / Task Type 
Device  

Function 

Web  

Search 
Chat 

# Sessions 300 240 60 

Average # requests in a session 2.44 2.59 8.95 

Satisfaction vs. ASR Quality 0.54 0.37 - 

Satisfaction vs. Intent Quality 0.77 0.76 0.70 

ASR Quality vs. Intent Quality 0.49 0.35 - 

Satisfaction vs. Frustration -0.63 -0.75 -0.76 

Satisfaction vs. Goal Success 0.69 0.67 0.70 

Satisfaction vs. Effort -0.67 -0.71 -0.63 

“-” means the correlation is statistically insignificant (p≥0.05)  
all other correlations are significant (p<0.05) 

 
Figure 1. Average task-level ratings for users with increased, 

equal, or decreased interests after the experiments (10 tasks). 
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certain amount of training data, we can automatically identify ac-
tion types defined in Section 5 accurately. If not specified, we use 
predicted user action types in following experiments. 

7.2 Action Sequence Model 
Table 7 shows results for action sequence model without using the 
prior probability of classes with both the human annotated and the 
predicted action types. The results show that using predicted ac-
tions can be as effective as using human annotated actions in all 
three prediction tasks. We did not observe significant difference of 
the two in predicting user satisfaction and the intent classification 
quality. The action sequence model using the predicted action types 
has only slightly worse average F-measure comparing to that using 
human annotated action types when predicting ASR quality (0.699 
vs. 0.713, p<0.05). Again, this shows that the prediction of user ac-
tion type is accurate and does not affect much on the performance 
of the action sequence model. 

Due to few baseline approaches for evaluating device-dialog 
function tasks, we do not directly compare action sequence model 
to other approaches. But according to Wang et al.’s studies [32], 
state-of-the-art approaches predict user satisfaction in web search 
with the average F-measures ranging from 0.7 to 0.8. The action 
sequence model achieves similar performance in evaluating device 
function tasks of intelligent assistants. The model is relatively more 
effective in prediction of user satisfaction and intent classification 
quality (with 0.79 and 0.76 average F-measures), but worse in eval-
uating ASR quality (but still can achieve about 0.7 average F-meas-
ure). It is probably because many action patterns indicating SAT 
and DSAT sessions are not equally predictive of ASR quality. We 
will show examples in Section 7.1.3. Using the prior probability of 
classes leads to 2%-3% improvement in accuracy, but about 2% 
decline in F-measure. We do not further show details here. 

7.3 Action Sequence Patterns 
We further analyze typical action sequence patterns indicative of 
SAT or DSAT sessions. We look into the following four patterns: 
- actions prior to the end of a session, i.e., (*, *, END) 
- actions next to a user command, i.e., (Command, *, *) 
- actions after system execution, i.e., (Execute, *, *) 
- actions before system execution, i.e., (*, *, Execute) 

For each action sequence, we calculate its probabilities in SAT 
and DSAT sessions. We use the probability ratio as an indicator of 
to what degree its occurrence favors the session is satisfactory. If 
the ratio is greater than one, occurrence of action sequence favors 
the session is satisfactory. We use human annotated action types 
for the accuracy of analysis. Table 8 shows results. 

The (*, *, END) pattern helps us analyze how SAT and DSAT 
sessions terminate. It shows that SAT sessions are more likely to 
end with a system execution. The probability ratio for (Command, 
Execute, END), (Yes, Execute, END), and (Select, Execute, END) 
are all above 1. In comparison, ending with a system action other 
than “Execute” is a strong indicator of DSAT sessions. This is not 
surprising since by our definition, “Execute” is the only way to 
achieve the task goal in device-dialog function tasks. If the session 
terminates with other actions, it probably means that the user gives 
up without achieving the goal. However, note that even in DSAT 

sessions, the chances of ending with “Execute” is still much higher 
than other actions (not shown in the table). Therefore, this pattern 
can only be applied to a limited number of DSAT sessions (high 
precision but low recall). 

Since it relies on correct “Execute” to achieve the task goal, we 
further analyze action sequence prior to and next to “Execute”, i.e., 
(*, *, Execute) and (Execute, *, *). Results show that it is a strong 
indicator of SAT sessions if the user successfully commands the 
system to execute an operation at the first round (the ratio is as high 
as 3.84). “Execute” next to “Yes” or “Select” are weaker, but still 
indicative of SAT sessions. In comparison, if (Command, Execute) 
does not happen at the beginning of a session, it is an indicator of 
DSAT sessions, e.g., (Option, Command, Execute) and (Execute, 
Command, Execute) all have lower than 1 ratio. These sequences 
indicate errors in the previous rounds. For example, when intelli-
gent assistant provides a list of options (“Option”), normally user 
should select one option (“Select”). If the user issues a new com-
mand instead, it means the options are not useful at all. This also 
supports using time_first_execute as a feature (Section 5.5.3). 

We further analyze action sequence patterns next to “Execute”. 
It shows that if the session does not terminate after an “Execute”, it 
is nearly always an indicator of DSAT sessions. This is because that 
any further interactions after an “Execute” means that the executed 
operation is incorrect (such that the user needs to correct it or retry). 

The last pattern is actions next to user commands. Results show 
that if the user confirms to execute an operation after “Command”, 
it is a very strong indicator of SAT sessions (the ratio is 4.47). 
(Command, Execute, END) is also a strong indicator. In contrast, it 
indicates DSAT sessions if user continuously issues two commands 
in adjacent requests, e.g., (Command, Execute, Command). This 
pattern suggests system did not correctly understand the previous 
command so that user needs to retry a new command. Besides, 
providing an option list or asking users for questions after a user 
command probably means negative user experience. On the one 
hand, this is probably because “Option” and “Question” indicate 
partial understanding of previous user commands in Cortana. For 
example, in Table 4, user asks for the closest pharmacy, but system 
does not understand “closest” and just returns a list of pharmacies 
nearby. On the other hand, this may suggest limited user experience 
for such interaction style, because (Command, Option, Select) and 
(Command, Question, Answer) increases the time to “Execute” and 
the effort to achieve the task goal by involving more interactions. 

However, comparing to Table 8, some action patterns suggest 
distinct information in predicting of ASR and intent classification 
quality. Table 9 shows the probability ratios for action patterns with 
large differences in the three evaluation scenarios. Some patterns 
indicating SAT sessions do not suggest positive ASR quality, e.g., 
(Confirm, Yes, Execute) and (Yes, Execute, END). Similarly, some 
frequent patterns in DSAT sessions do not indicate negative ASR 
quality. This probably explains why action sequence model is less 
effective in evaluating ASR quality. Similar differences were found 
between satisfaction and intent classification quality. However, we 

Table 6. Effectiveness of user action type classification. 

Action Type Proportion F1 Precision Recall 

Command 67.6% 0.956 0.973 0.940 
Yes 6.7% 0.956 0.984 0.929 
No 2.8% 0.815 0.867 0.768 

Select 13.9% 0.849 0.793 0.913 
Answer 9.0% 0.910 0.870 0.953 

Micro-averaged - 0.932 0.932 0.932 
Macro-averaged - 0.897 0.897 0.901 

 

Table 7. Effectiveness using action sequence (without prior 

probability of classes) to evaluate device-dialog function tasks. 

User Satisfaction Avg F1 Pos F1 Neg F1 Accuracy 

Human Annotated Action  0.785 0.861 0.709 0.813 
Predicted Action 0.793 0.866 0.719* 0.820 

ASR Quality Avg F1 Pos F1 Neg F1 Accuracy 

Human Annotated Action  0.713 0.873 0.553 0.804 
Predicted Action 0.699* 0.877 0.522** 0.805 

Intent Classification Quality  Avg F1 Pos F1 Neg F1 Accuracy 

Human Annotated Action  0.772 0.886 0.658 0.831 
Predicted Action 0.764 0.883 0.645 0.825 

* and ** means p<0.05 and p<0.01 comparing to “Human Annotated Action”. 
 



still found many patterns indicating ASR and intent classification 
quality. This is why action sequence model can effectively evaluate 
ASR and intent classification quality. The differences suggest it is 
necessary to train different models for each evaluation scenario. 

To conclude, results in this section show that the action sequence 
model is an effective approach for evaluating intelligent assistants 
in device-dialog function tasks. Besides, analysis of action patterns 
is a helpful tool to diagnose effective and ineffective interactions. 

7.4 Other Features 
We further evaluate and compare the effectiveness of generic fea-
tures. We first evaluate each individual feature set separately. Then, 
we evaluate combinations of feature sets. We use gradient boosted 
decision tree for classification [5]. Table 10 shows the results. 

7.4.1 Request Features 
Request features and action sequence are the two best performed 
feature sets. They have comparable effectiveness in predicting user 
satisfaction. Action sequence features are relatively more effective 
in predicting ASR quality, but less accurate in prediction of intent 
classification quality. They outperform other features significantly 
in both F-measure and accuracy. They are also more effective than 
the naive action sequence model approach, especially in predicting 
ASR quality (average F-measure improved by about 10%). 

Figure 2 further shows comparison of user behavior statistics in 
SAT and DSAT sessions. It shows that significant differences exist 
in many request characteristics between SAT and DSAT sessions, 
including: the number of requests in a session (1.68 vs. 4.12), the 
percentage of requests with dwell time longer than 30 seconds 
(40.7% vs. 19.6%), request length after removing stop words (3.12 
vs. 3.53), the number of common words between adjacent requests 
(0.50 vs. 1.27), and the number of repeated requests (simply count 
by whether two adjacent requests have same ASR outputs; 0.022 
vs. 0.075). These statistics explain why request features have strong 
performance in predicting user satisfaction. 

In prediction of ASR and intent classification quality, we ob-
served similar differences. However, the distinction between ses-
sions with SAT and DSAT ASR quality are less significant in terms 
of request length (3.21 vs. 3.53, p=0.09) and the number of com-
mon words between adjacent requests (0.91 vs. 1.14, p=0.08). This 
explains why request features are relatively less effective in pre-
dicting ASR quality (but still achieved 0.743 F-measure). 

7.4.2 Response Features  
Response features are useful for predicting user satisfaction (the 
average F-measure is 0.758), but relatively less indicative of the 
quality of ASR and intent classification (with average F-measure 
0.673 and 0.695). As shown in Figure 2, we also found significant 

Table 8. Action sequence (using human annotated action types)  

probability ratio in SAT and DSAT sessions for four patterns. 

Table 9. Action sequence probability ratio  

difference in prediction of user satisfaction,  

ASR quality, and intent classification quality. 

Action Sequence 
Ratio 

SAT ASR Intent 
Yes Execute END 1.76 0.83 1.68 
Confirm Yes Execute 1.64 0.78 1.54 
Command Option Select 0.85 1.48 0.96 
Execute Command Execute 0.70 1.10 0.77 
Answer Confirm Yes 0.66 0.38 1.27 
Question Answer Question 0.47 0.27 1.44 
START Command WebSearch 0.39 1.26 0.19 
Question Answer Confirm 0.37 0.28 1.33 
Answer Question Answer 0.34 0.27 1.44 
No Option Select 0.21 0.12 2.31 
Confirm No Option 0.17 0.16 1.73 
Answer Confirm No 0.09 0.12 1.35 

 

(*, *, END) Ratio  
Command Execute END 3.43 
Yes Execute END 1.76 
Select Execute END 1.34 
Answer Confirm END 0.21 
Command WebSearch END 0.08 
Command Error END 0.00 

 

(Execute, *, *) Ratio  
Execute END END 2.39 
Execute Command Execute 0.70 
Execute Select Execute 0.57 
Execute Command WebSearch 0.28 
Execute Command Confirm 0.00 
Execute Command Option 0.00 
Execute Command Question 0.00 
Execute Command Error 0.00 

 

(*, *, Execute) Ratio 
START Command Execute 3.84 
Confirm Yes Execute 1.64 
Option Select Execute 1.06 
Option Command Execute 0.85 
Execute Command Execute 0.70 
Execute Select Execute 0.57 
WebSearch Command Execute 0.34 

 

(Command, *, *) Ratio 
Command Confirm Yes 4.47 
Command Execute END 3.43 
Command Option Select 0.85 
Command Execute Command 0.51 
Command Question Answer 0.40 
Command WebSearch Command 0.23 
Command Option Command 0.04 

 

Table 10. Effectiveness of using action sequence to predict user satisfaction and the quality of ASR and intent classification. 

Features 
User Satisfaction ASR Quality Intent Classification Quality 

Avg F1 Pos F1 Neg F1 Accuracy Avg F1 Pos F1 Neg F1 Accuracy Avg F1 Pos F1 Neg F1 Accuracy 

Click 0.524** 0.825** 0.222** 0.718** 0.561** 0.880** 0.242** 0.795** 0.533** 0.844** 0.222** 0.743** 

Request 0.815 0.901 0.729 0.856 0.743* 0.903 0.583* 0.846 0.796 0.904 0.688* 0.858 

Response 0.758** 0.850** 0.665** 0.796** 0.673** 0.884** 0.463** 0.810** 0.695** 0.880 0.511** 0.812* 

Acoustic 0.743** 0.849** 0.638** 0.790** 0.703** 0.882** 0.525** 0.815** 0.745* 0.875* 0.616* 0.813* 

Action Sequence 0.819 0.892 0.746 0.850 0.763 0.903 0.623 0.848 0.776 0.892 0.660 0.839 

Best Feature Set 
All Features Action + Request + Acoustic Action + Request + Acoustic 

0.852** 0.920** 0.783* 0.886** 0.786 0.909 0.664* 0.859 0.825** 0.913* 0.736** 0.874** 

* and ** means p<0.05 and p<0.01 comparing to “Action Sequence”; shaded cells indicate the best results among those using individual feature set. 

    

    

Figure 2. User behavior statistics (with standard error) in SAT and DSAT sessions. All differences are significant at 0.05 level. 
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differences between SAT and  DSAT sessions in the percentage of 
requests with voice responses (76.9% vs. 65.5%) and the number 
of rounds to the first “Execute” action in the session (3.82 vs. 6.56). 
However, we did not find the Jaccard similarity of results useful, 
probably due to the fact that only about 10% of the responses in 
device+dialog function tasks include a result list (counting both the 
web search results and answer items).  

We found similar and significant differences in response features 
and related user behavior in predicting intent classification quality. 
However, we only observed a slightly significant difference in the 
number of rounds to the first “Execute” action between sessions 
with and without satisfactory ASR quality (4.38 vs. 5.75, p=0.07). 
Other response features are not very indicative of the ASR quality. 
This is probably why response features perform relatively worse in 
predicting ASR quality comparing evaluating user satisfaction and 
intent classification quality. 

7.4.3 Acoustic Features 
Results suggest that acoustic features can also effectively predict 
user satisfaction as well as the quality of ASR and intent classifica-
tion in device function tasks. We found significant differences in 
speech recognition confidence scores between SAT and DSAT ses-
sions, as well as between those with SAT and DSAT quality of ASR 
and intent classification. This suggests that Huang et al.’s approach 
[12] is not only effective for predicting ASR quality of utterances, 
but also correlate well with user ratings of ASR quality at session 
level for intelligent assistant tasks. This is also why it is effective 
for predicting user satisfaction and intent classification considering 
the correlations between them. 

In addition, we found that detecting requests with slower speak-
ing rates are predictive of sessions with dissatisfactory ASR qual-
ity. Figure 3 shows the percentage of requests with slower speaking 
rates at different slower ratios (with standard error). The percentage 
of slower speaking requests (“% request” in Figure 3) are consist-
ently higher in session with dissatisfactory ASR quality when we 
set the slower ratio r below 70%. The differences are significant at 
0.05 level when we set r to 0.15, 0.6 or 0.65. Similar differences 
exist between the SAT and DSAT sessions, but are less significant. 
However, we did not observe such differences between sessions 
with satisfactory and dissatisfactory intent classification quality. 
This suggests that slowing-down is probably only a strategy of the 
user to deal with speech recognition error, but not necessarily for 
intent classification errors. 

7.4.4 Click Features 
Click features have the worst performance comparing to others, de-
spite they are important in predicting satisfaction in web search. We 
found this is mainly because users do not “click” results very often 
in device+dialog function tasks. Here click means to tap a result on 
the screen. The result can be a search result or an answer item re-
turned in device+dialog function tasks (e.g., it can be a place an-
swer when looking for locations). One possible reason is that intel-
ligent assistants allow users to interact with result items through 
voice interaction, e.g., the “Option” and “Select” action. In such 

case, users may rely less on tapping or other touch based interac-
tion. Also, we did not observe significantly different user behavior 
related to click features. Thus, it is not surprising that click features 
are not as effective as they are in web search. 

7.4.5 Using Multiple Features 
After combining multiple features, we significantly improved the 
prediction of user satisfaction and intent classification quality by 
about 4%-6% in F-measure and accuracy (comparing to using the 
action sequence features). We finally achieved about 0.8 F-measure 
and 0.85 accuracy in all three evaluation scenarios. This confirms 
that our approach can effectively evaluate overall quality of intelli-
gent assistants as well as its components. 

8. WEB SEARCH AND CHAT TASKS  
We further evaluate the effectiveness of features in web search and 
chat tasks. Table 11 shows the results for web search tasks. 

Similar to the findings in device+dialog function tasks, results in 
Table 11 show that click features have very weak predictive powers 
for overall satisfaction and ASR and intent classification quality in 
web search tasks. The chances of clicking results remains low in 
web search tasks on intelligent assistants. Still, we did not observe 
significant differences in click features between SAT and DSAT 
sessions. However, different from the device+dialog function tasks, 
we cannot simply explain this by the availability of voice interac-
tion to make selections, because Cortana did not provide users such 
function in web search scenario (e.g., at the time of the study, Cor-
tana will not understand requests such as “open the first webpage”). 

One possible reason is that user becomes less willing to click and 
read details of a result page on mobile devices. Instead, they may 
prefer knowing answers directly, either displayed on the result 
webpage, or responded by Cortana in voice. Some participants’ re-
sponses in the interview support this explanation: “For example 
with the scores it would have been nice if I just said San Francisco 
Giants and it just came up with a list of scores ... Rather than a 
website where I have to check it or a sports blog.” [sic] Another 
evidence supporting this claim is that 14.8% requests in SAT ses-
sions have voice responses (an indicator that Cortana provides ex-
tracted instant answers to the query in web search tasks), which is 
significantly higher than only 6.6% in the DSAT sessions.  

Request features and acoustic features are also very effective for 
evaluating web search tasks. Request features are the strongest 

 

Figure 3. Percentage of requests (y-axis) whose speaking rate 

comparing to the previous requests falls below ratio r (x-axis).  
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Table 11. Effectiveness of features for predicting user satisfaction, ASR and intent classification quality in web search tasks. 

Features 
User Satisfaction ASR Quality Intent Classification Quality 

Avg F1 Pos F1 Neg F1 Accuracy Avg F1 Pos F1 Neg F1 Accuracy Avg F1 Pos F1 Neg F1 Accuracy 

Click 0.536** 0.749** 0.324** 0.649** 0.493** 0.687** 0.299** 0.579** 0.533** 0.695** 0.370** 0.595** 

Request 0.796 0.840 0.751 0.810 0.721** 0.754* 0.689** 0.730** 0.755 0.742 0.769 0.765 

Response 0.614** 0.764** 0.465** 0.679** 0.509** 0.714** 0.305** 0.601** 0.587** 0.722** 0.452** 0.639** 

Acoustic 0.721** 0.771** 0.671** 0.732** 0.752* 0.754* 0.749 0.758 0.715** 0.728** 0.702** 0.725** 

Best Feature Set 
All Features Click + Request + Acoustic Request + Acoustic 

0.798 0.858 0.738 0.822 0.772 0.784 0.76 0.777 0.769 0.766 0.772 0.777 

* and ** means p<0.05 and p<0.01 comparing to “Best Feature Set”; shaded cells indicate the best results among those using individual feature set. 



feature set in predicting user satisfaction and intent classification 
quality. In comparison, acoustic features outperforms others in pre-
dicting ASR quality. Further analysis found differences of related 
user behavior similar to those in device+dialog function tasks. 
Comparing to DSAT sessions, SAT sessions of web search tasks 
have significantly less (1.83 vs. 3.68) and shorter queries (4.34 vs. 
4.72 words), as well as longer query dwell time (43% queries’ dwell 
time is longer than 30s vs. 23% in DSAT sessions). ASR confi-
dence score and queries with slower speaking rates also differ sig-
nificantly in SAT and DSAT sessions. However, we did not find 
significant differences in query similarity (i.e., the number of com-
mon words) between SAT and DSAT sessions in web search tasks. 

Besides, our results also confirm Shokouhi et al.’s findings [26] 
that switching from voice to text input is a signal of dissatisfactory 
user experience. As shown in Figure 2, among all the SAT sessions 
of web search tasks, we observed no voice-to-text switches. In com-
parison, 2.3% of the query reformulations in DSAT sessions are 
from voice to text. This suggests that voice-to-text is a highly pre-
cise indicator for DSAT sessions (but the coverage is limited). 

After combining multiple features, we achieved better prediction 
results. The best approach has 0.798 average F-measure predicting 
user satisfaction, which is comparable to those reported for state-
of-the-art approaches in normal web search scenario [32]. 

We further apply request, response, and acoustic features to chat 
tasks (because it seems meaningless to apply click features to chat 
tasks). Table 12 shows that these features are still predictive of user 
satisfaction and ASR quality in chat tasks, although less accurate 
than they are device+dialog function and web search tasks. They 
have limited effectiveness in evaluating intent classification quality 
in chat tasks. This suggests that automatic evaluation of chat quality 
is more challenging, just as it is probably also more challenging to 
solve the chat task comparing to other two types of tasks due to its 
open-ended nature.  

To conclude, results suggest that we can apply features adopted 
in previous web search satisfaction studies (e.g., most of the click, 
request, and response features), as well as those newly designed for 
intelligent assistants (e.g., acoustic features, voice-to-text, etc.) to 
evaluate web search tasks and chat tasks in intelligent assistants. 
However, some of them are less effective in intelligent assistant, 
e.g., click features. Besides, our results show that using the same 
features, we can train different models to effectively predict ASR 
and intent classification quality as well. In addition, the effective-
ness of acoustic features suggests that we can use voice interaction 
and related user behavior to improve modeling of applications in 
voice enabled scenario, e.g., intelligent assistant.  

9. DISCUSSION AND CONCLUSION 
This paper explored evaluation of intelligent assistants. This is a 
challenging problem due to the variability of tasks and topics. We 
developed task-independent approaches to address the challenge 
and proved their effectiveness in experiments. Results demonstrate 
that using the same approach, we can evaluate not only intelligent 
assistant itself, but also its two components: speech recognition and 
intent classification. Results of a user study show the quality of both 
components affect user experience in intelligent assistants. 

Admittedly, our study is limited in the coverage of t asks and the 
way data is collected. Due to the sensitivity and difficulty of data 
collection, we did not study a popular function of many intelligent 
assistants, i.e., proactive suggestions. This function requires lots of 

personal information, while in our lab study it is difficult to prepare 
such data for participants to perform tasks. Besides, we develop our 
tasks based on a very early sample of Cortana logs. These tasks are 
not necessarily representative of other products, nor Cortana today. 
In addition, using lab study to collect data is a double-bladed sword. 
An alternative approach usually adopted is to ask third-party judger 
to assess session quality. In comparison, lab study can collect real 
user’s judgments, but cannot simulate the real environment of using 
intelligent assistants, which may affect user interaction pattern. For 
example, we may observe a longer dwell time when user is driving, 
and user may not repeat requests but switch to text more often when 
it is noisy. Although many user behavior signals may change, this 
should not affect the effectiveness of our approach, as long as we 
can detect and train models for the environment.  

Another issue we did not consider in this paper is the variability 
of interface and interaction. Comparing to well-studied applications 
(e.g., web search and the “10 blue links”), there is no “standard” 
interface or interaction mode in intelligent assistants, especially in 
device+dialog function tasks. On the one hand, there are different 
ways of implementing the same action, e.g., the intelligent assistant 
can ask user to confirm and wait for user response, or simply think 
the user agrees if there is no explicit response after a few seconds. 
When asking users for more information, it can ask by voice and 
wait for voice response, or just show input box on the screen and 
wait for text input. On the other hand, the set of actions may evolve 
in the future, although we found it is enough to characterize inter-
action in existing products. Depending on the availability of actions 
and their implementation, we may observe different action patterns, 
and we may need to retrain models to evaluate new interface de-
signs. This suggests we should be cautious to use implicit feedback-
based models to evaluate systems with different interface designs. 

Comparing the three types of tasks, our approach works the best 
in device function tasks, and the worst in chat tasks. We suspect it 
is due to the number of features applicable to each task. As analyzed 
in Section 7.3, many action patterns indicate positive or negative 
user experience in device function tasks, but they are not available 
in web search and chat. Comparing to web search, it is meaningless 
to use click features as well as many other features in chat tasks, 
such as request type, voice-to-text, result similarity, etc. In addition, 
this may also be caused by the subjectivity of tasks. That device+di-
alog function tasks are the least subjective one, because the goal is 
clear and straight-forward, i.e., commanding intelligent assistant to 
do something. In contrast, some of the web search tasks are more 
open-ended and complex, e.g., finding flight schedule. Chat is the 
most open-ended task, since different users may judge chat quality 
differently, e.g., some may prefer funny responses, while some oth-
ers may expect the conversation to be as natural as talking to real 
person. We suspect the more open-ended a task is, the more diffi-
cult we can train a unified model to evaluate the task, because the 
subjectivity of the task may result in distinct user behavior. 

Our study also assumes the existence of an accurate classifier for 
the three task types. Although this is reasonable, it is unclear how 
actual accuracy of the classifier would affect the effectiveness of 
the overall evaluation process. In addition, we only adopt satisfac-
tion as the user experience measure in this study. It is unclear how 
well our approach can predict other user experience measures such 
as task success and efforts. These are left for future work. Despite 
these limitations, we push forward studies of intelligent assistant as 
well as modeling of user satisfaction and evaluation. 

First, we are the first study to address the challenge of evaluating 
intelligent assistants. Although similar studies exist in web search, 
the diversity of tasks and interaction are not comparable to those in 
intelligent assistants. Our approach is task-independent. Although 
some features (e.g., action sequence) only apply to device+dialog 

Table 12. Effectiveness of evaluating chat tasks. 

 Avg F1 Pos F1 Neg F1 Accuracy 

User Satisfaction 0.673 0.563 0.783 0.715 

ASR Quality 0.702 0.767 0.637 0.724 

Intent Classification Quality 0.590 0.329 0.851 0.761 



function tasks, the majority is shared among all the tasks, making 
it a generalizable approach for other products and future changes. 

Second, our results demonstrate that, using the same approach, 
we can train models to evaluate not only overall user satisfaction in 
intelligent assistant, but also the quality of speech recognition and 
intent classification. This contributes to more detailed diagnosis of 
intelligent assistants in evaluation, as well as a user-centric way of 
evaluating related techniques (e.g., ASR) in specific applications. 

Third, through user behavior analysis, we found lots of patterns 
and behavioral signals indicating user experience in intelligent as-
sistants. Although some of them may be affected by system design, 
most of the patterns are potentially generalizable to similar appli-
cations, e.g., the session does not terminate with an Execute can be 
a strong signal of user abandon. These patterns are useful for related 
studies and evaluation of other systems. 

As we discussed, it requires further work to refine a few places 
in our study, e.g., to consider uncovered tasks, environments, and 
variability of interface designs, to examine the effects of task type 
classification accuracy on the effectiveness of the approach, to cor-
relate with other user experience measures, and to compare native 
and non-native speakers. Solutions to these issues will further im-
prove the performance and reliability of our approach. 

ACKNOWLEDGMENT 
Jiepu Jiang was an intern at Microsoft Research while conducting 
the study, and he was supported in part by the Center for Intelligent 
Information Retrieval at the time of writing this article. Any opin-
ions, findings and conclusions or recommendations expressed in 
this material are those of the authors and do not necessarily reflect 
those of the sponsor. 

REFERENCES 
[1] Ageev, M., Guo, Q., Lagun, D. and Agichtein, E. (2011). 

Find it if you can: a game for modeling different types of 
web search success using interaction data. Proc. SIGIR ’11, 
345–354. 

[2] Smith R.W. and Hipp, D.R. (1995). Spoken Natural Lan-

guage Dialog Systems: A Practical Approach. Oxford Uni-
versity Press. 

[3] Feild, H.A., Allan, J. and Jones, R. (2010). Predicting 
searcher frustration. Proc. SIGIR ’10, 34–41. 

[4] Fox, S., Karnawat, K., Mydland, M., Dumais, S. and White, 
T. 2005. Evaluating implicit measures to improve web 
search. ACM TOIS, 23(2), 147–168. 

[5] Friedman, J., Hastie, T., Tibshirani, R. (2000). Additive lo-
gistic regression: a statistical view of boosting (with discus-
sion and a rejoinder by the authors). The Annals of Statistics. 

[6] Hassan, A. (2012). A semi-supervised approach to modeling 
web search satisfaction. Proc. SIGIR ’12, 275–284. 

[7] Hassan, A., Jones, R. and Klinkner, K.L. (2010). Beyond 
DCG: user behavior as a predictor of a successful search. 
Proc. WSDM ’10, 221–230. 

[8] Hassan, A., Shi, X., Craswell, N. and Ramsey, B. (2013). Be-
yond clicks: query reformulation as a predictor of search sat-
isfaction. Proc. CIKM ’13, 2019–2028. 

[9] Hassan, A., Song, Y. and He, L. (2011). A task level metric 
for measuring web search satisfaction and its application on 
improving relevance estimation. Proc. CIKM ’11, 125–134. 

[10] Hassan, A., White, R.W., Dumais, S.T. and Wang, Y.M. 
(2014). Proc. WSDM ’14, 53–62. 

[11] Heck, L.P., Hakkani-Tür, D., Chinthakunta, M., Tür, G., 
Iyer, R., Parthasarathy, P., Stifelman, L., Shriberg, E. and 
Fidler, A. (2013). Multi-modal conversational search and 
browse. Proceedings of the First Workshop on Speech, Lan-

guage and Audio in Multimedia, 96–101. 

[12] Huang, P.S., Kumar, K., Liu, C., Gong, Y. and Deng, L. 
(2013). Predicting speech recognition confidence using deep 
learning with word identity and score features. Proc. 

ICASSP, 7413–7417. 
[13] Huffman, S.B. and Hochster, M. (2007). How well does re-

sult relevance predict session satisfaction? Proc. SIGIR ’07, 
567–574. 

[14] Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based 
evaluation of IR techniques. ACM TOIS, 20(4), 422–446. 

[15] Järvelin, K., Price, S., Delcambre, L.L. and Nielsen, M. 
(2008). Discounted Cumulated Gain Based Evaluation of 
Multiple-Query IR Sessions. Proc. ECIR ’08, 4–15. 

[16] Jeng, W., Jiang, J. and He, D. (2013). Users’ Perceived Diffi-
culties and Corresponding Reformulation Strategies in Voice 
Search. Proc. HCIR 2013. 

[17] Jiang, J., Hassan Awadallah, A., Shi, X. and White, R.W. 
(2015). Understanding and Predicting Graded Search Satis-
faction. Proc. WSDM ’15, 57–66. 

[18] Jiang, J., He, D. and Allan, J. (2014). Searching, browsing, 
and clicking in a search session. Proc. SIGIR ’14, 607–616. 

[19] Jiang, J., Jeng, W. and He, D. (2013). How do users respond 
to voice input errors? lexical and phonetic query reformula-
tion in voice search. Proc. SIGIR ’13, 143–152. 

[20] Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, 
P., Walker, M., Whittaker, S. and Maloor, P. (2002). 
MATCH: An architecture for multimodal dialogue systems. 
Proc. ACL ’02, 376–383. 

[21] Kim, Y., Hassan, A., White, R.W. and Zitouni, I. (2014). 
Comparing client and server dwell time estimates for click-
level satisfaction prediction. Proc. SIGIR ’14, 895–898. 

[22] Kim, Y., Hassan, A., White, R.W. and Zitouni, I. (2014). 
Modeling dwell time to predict click-level satisfaction. Proc. 

WSDM ’14, 193–202. 
[23] Kotov, A., Bennett, P.N., White, R.W., Dumais, S.T. and 

Teevan, J. (2011). Modeling and analysis of cross-session 
search tasks. Proc. SIGIR ’11, 5–14. 

[24] Niu, X. and Kelly, D. (2014). The use of query suggestions 
during information search. IP&M, 50(1), 218–234. 

[25] Philips, L. (1990). Hanging on the Metaphone. Computer 

Language, 7(12), 39–44. 
[26] Shokouhi, M., Jones, R., Ozertem, U., Raghunathan, K. and 

Diaz, F. 2014. Mobile query reformulations. Proc. SIGIR 

’14, 1011–1014. 
[27] Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., 

Jurafsky, D., Taylor, P., Martin, R., Van Ess-Dykema, C. and 
Meteer, M. (2000). Dialogue act modeling for automatic tag-
ging and recognition of conversational speech. Computa-

tional linguistics, 26(3), 339–373. 
[28] Traum, D.R. (2000). 20 questions on dialogue act taxono-

mies. Journal of semantics, 17(1), 7–30. 
[29] Tur, G. and De Mori, R. (2011). Spoken language under-

standing: Systems for extracting semantic information from 

speech. John Wiley & Sons. 
[30] Wahlster, W. (2006). SmartKom: foundations of multimodal 

dialogue systems. Springer. 
[31] Walker, M.A., Litman, D.J., Kamm, C.A. and Abella, A. 

(1997). PARADISE: A framework for evaluating spoken dia-
logue agents. Proc. ACL ’97, 271–280. 

[32] Wang, H., Song, Y., Chang, M.W., He, X., Hassan, A. and 
White, R.W. (2014). Modeling action-level satisfaction for 
search task satisfaction prediction. SIGIR ’14, 123–132. 

[33] Young, S., Gasic, M., Thomson, B. and Williams, J.D. 
(2013). POMDP-based statistical spoken dialog systems: A 
review. Proc. IEEE, 101(5), 1160–1179. 


	1. INTRODUCTION
	2. RELATED WORK
	3. INTELLIGENT ASSISTANTS
	3.1 Functionality
	3.2 Usage Analysis
	3.3 Goal of Evaluation

	4. USER STUDY
	4.1 Participants
	4.2 Tasks
	4.3 Device and Environment
	4.4 Procedure

	5. METHOD
	5.1 User and System Action
	5.2 Modeling Action Patterns
	5.3 Generic Features
	5.3.1 Click Features
	5.3.2 Request Features
	5.3.3 Response Features
	5.3.4 Acoustic Features


	6. DATA
	7. DEVICE+DIALOG FUNCTION TASKS
	7.1 Action Type Classification
	7.2 Action Sequence Model
	7.3 Action Sequence Patterns
	7.4 Other Features
	7.4.1 Request Features
	7.4.2 Response Features
	7.4.3 Acoustic Features
	7.4.4 Click Features
	7.4.5 Using Multiple Features


	8. WEB SEARCH AND CHAT TASKS
	9. DISCUSSION AND CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

