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Abstract

Accurately segmenting a citation string

into fields for authors, titles, etc. is a chal-

lenging task because the output typically

obeys various global constraints. Previous

work has shown that modeling soft con-

straints, where the model is encouraged,

but not require to obey the constraints, can

substantially improve segmentation per-

formance. On the other hand, for impos-

ing hard constraints, dual decomposition

is a popular technique for efficient predic-

tion given existing algorithms for uncon-

strained inference. We extend dual decom-

position to perform prediction subject to

soft constraints. Moreover, with a tech-

nique for performing inference given soft

constraints, it is easy to automatically gen-

erate large families of constraints and learn

their costs with a simple convex optimiza-

tion problem during training. This allows

us to obtain substantial gains in accuracy

on a new, challenging citation extraction

dataset.

1 Introduction

Citation field extraction, an instance of informa-

tion extraction, is the task of segmenting and la-

beling research paper citation strings into their

constituent parts, including authors, editors, year,

journal, volume, conference venue, etc. This task

is important because citation data is often pro-

vided only in plain text; however, having an ac-

curate structured database of bibliographic infor-

mation is necessary for many scientometric tasks,

such as mapping scientific sub-communities, dis-

covering research trends, and analyzing networks

of researchers. Automated citation field extrac-

tion needs further research because it has not yet

reached a level of accuracy at which it can be prac-

tically deployed in real-world systems.

Hidden Markov models and linear-chain condi-

tional random fields (CRFs) have previously been

applied to citation extraction (Hetzner, 2008; Peng

and McCallum, 2004) . These models support ef-

ficient dynamic-programming inference, but only

model local dependencies in the output label se-

quence. However citations have strong global reg-

ularities not captured by these models. For exam-

ple many book citations contain both an author

section and an editor section, but none have two

disjoint author sections. Since linear-chain mod-

els are unable to capture more than Markov depen-

dencies, the models sometimes mislabel the editor

as a second author. If we could enforce the global

constraint that there should be only one author

section, accuracy could be improved.

One framework for adding such global con-

straints into tractable models is constrained infer-

ence, in which at inference time the original model

is augmented with restrictions on the outputs such

that they obey certain global regularities. When

hard constraints can be encoded as linear equa-

tions on the output variables, and the underlying

model’s inference task can be posed as linear opti-

mization, one can formulate this constrained infer-

ence problem as an integer linear program (ILP)

(Roth and Yih, 2004). Alternatively, one can em-

ploy dual decomposition (Rush et al., 2010). Dual

decompositions’s advantage over ILP is is that it

can leverage existing inference algorithms for the

original model as a black box. Such a modular

algorithm is easy to implement, and works quite

well in practice, providing certificates of optimal-

ity for most examples.

The above two approaches have previously been

applied to impose hard constraints on a model’s

output. On the other hand, recent work has demon-

strated improvements in citation field extraction

by imposing soft constraints (Chang et al., 2012).

Here, the model is not required obey the global

constraints, but merely pays a penalty for their vi-
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Figure 1: Example labeled citation

olation.

This paper introduces a novel method for im-

posing soft constraints via dual decomposition.

We also propose a method for learning the penal-

ties the prediction problem incurs for violating

these soft constraints. Because our learning

method drives many penalties to zero, it allows

practitioners to perform ‘constraint selection,’ in

which a large number of automatically-generated

candidate global constraints can be considered and

automatically culled to a smaller set of useful con-

straints, which can be run quickly at test time.

Using our new method, we are able to incor-

porate not only all the soft global constraints of

Chang et al. (2012), but also far more com-

plex data-driven constraints, while also provid-

ing stronger optimality certificates than their beam

search technique. On a new, more broadly rep-

resentative, and challenging citation field extrac-

tion data set, we show that our methods achieve a

17.9% reduction in error versus a linear-chain con-

ditional random field. Furthermore, we demon-

strate that our inference technique can use and

benefit from the constraints of Chang et al. (2012),

but that including our data-driven constraints on

top of these is beneficial. While this paper fo-

cusses on an application to citation field extrac-

tion, the novel methods introduced here would

easily generalize to many problems with global

output regularities.

2 Background

2.1 Structured Linear Models

The overall modeling technique we employ is to

add soft constraints to a simple model for which

we have an existing efficient prediction algorithm.

For this underlying model, we employ a chain-

structured conditional random field (CRF), since

CRFs have been shown to perform better than

other simple unconstrained models like hidden

markov models for citation extraction (Peng and

McCallum, 2004). We produce a prediction by

performing MAP inference (Koller and Friedman,

2009).

The MAP inference task in a CRF be can ex-

pressed as an optimization problem with a lin-

ear objective (Sontag, 2010; Sontag et al., 2011).

Here, we define a binary indicator variable for

each candidate setting of each factor in the graph-

ical model. Each of these indicator variables is

associated with the score that the factor takes on

when it has the indictor variable’s corresponding

value. Since the log probability of some y in the

CRF is proportional to sum of the scores of all the

factors, we can concatenate the indicator variables

as a vector y and the scores as a vector w and write

the MAP problem as

max. 〈w, y〉
s.t. y ∈ U ,

(1)

where the set U represents the set of valid config-

urations of the indicator variables. Here, the con-

straints are that all neighboring factors agree on

the components of y in their overlap.

Structured Linear Models are the general fam-

ily of models where prediction requires solving a

problem of the form (1), and they do not always

correspond to a probabilistic model. The algo-

rithms we present in later sections for handling

soft global constraints and for learning the penal-

ties of these constraints can be applied to gen-

eral structured linear models, not just CRFs, pro-

vided we have an available algorithm for perform-

ing MAP inference.

2.2 Dual Decomposition for Global

Constraints

In order to perform prediction subject to various

global constraints, we may need to augment the

problem (1) with additional constraints. Dual De-

composition is a popular method for performing

MAP inference in this scenario, since it lever-

ages known algorithms for MAP in the base prob-

lem where these extra constraints have not been

added (Komodakis et al., 2007; Sontag et al.,

2011; Rush and Collins, 2012). In this case, the

MAP problem can be formulated as a structured

linear model similar to equation (1), for which we

have a MAP algorithm, but where we have im-

posed some additional constraints Ay ≤ b that

no longer allow us to use the algorithm. In other



Algorithm 1 DD: projected subgradient for dual

decomposition with hard constraints

1: while has not converged do

2: y(t) = argmaxy∈U

〈

w +ATλ, y
〉

3: λ(t) = Π0≤·

[

λ(t−1)
− η(t)(Ay − b)

]

words, we consider the problem

max. 〈w, y〉
s.t. y ∈ U

Ay ≤ b,

(2)

for an arbitrary matrix A and vector b. We can

write the Lagrangian of this problem as

L(y, λ) = 〈w, y〉+ λT (Ay − b). (3)

Regrouping terms and maximizing over the primal

variables, we have the dual problem

min.λD(λ) = max
y∈U

〈

w +ATλ, y
〉

− λT b. (4)

For any λ, we can evaluate the dual objective

D(λ), since the maximization in (4) is of the same

form as the original problem (1), and we assumed

we had a method for performing MAP in this. Fur-

thermore, a subgradient of D(λ) is Ay∗−b, for an

y∗ which maximizes this inner optimization prob-

lem. Therefore, we can minimize D(λ) with the

projected subgradient method (Boyd and Vanden-

berghe, 2004), and the optimal y can be obtained

when evaluating D(λ∗). Note that the subgradient

of D(λ) is the amount by which each constraint is

violated by λ when maximizing over y.

Algorithm 1 depicts the basic projected subgra-

dient descent algorithm for dual decomposition.

The projection operator Π consists of truncating

all negative coordinates of λ to 0. This is neces-

sary because λ is a vector of dual variables for in-

equality constraints. The algorithm has converged

when each constraint is either satisfied by y(t) with

equality or its corresponding component of λ is 0,

due to complimentary slackness (Boyd and Van-

denberghe, 2004).

3 Soft Constraints in Dual

Decomposition

We now introduce an extension of Algorithm 1

to handle soft constraints. In our formulation, a

soft-constrained model imposes a penalty for each

unsatisfied constraint, proportional to the amount

by which it is violated. Therefore, our derivation

parallels how soft-margin SVMs are derived from

hard-margin SVMs by introducing auxiliary slack

variables (Cortes and Vapnik, 1995). Note that

when performing MAP subject to soft constraints,

optimal solutions might not satisfy some con-

straints, since doing so would reduce the model’s

score by too much.

Consider the optimization problems of the

form:
max. 〈w, y〉 − 〈c, z〉

s.t. y ∈ U
Ay − b ≤ z

−z ≤ 0,

(5)

For positive ci, it is clear that an optimal zi will

be equal to the degree to which aTi y ≤ bi is vio-

lated. Therefore, we pay a cost ci times the degree

to which the ith constraint is violated, which mir-

rors how slack variables are used to represent the

hinge loss for SVMs. Note that ci has to be pos-

itive, otherwise this linear program is unbounded

and an optimal value can be obtained by setting zi
to infinity.

Using a similar construction as in section 2.2 we

write the Lagrangian as:

(6)
L(y, z, λ, µ) = 〈w, y〉 − 〈c, z〉

+ λT (Ay − b− z) + µT (−z).

The optimality constraints with respect to z tell us

that −c− λ− µ = 0, hence µ = −c− λ. Substi-

tuting, we have

L(y, λ) = 〈w, y〉+ λT (Ay − b), (7)

except the constraint that µ = −c− λ implies that

for µ to be positive λ ≤ c.

Since this Lagrangian has the same form as

equation (3), we can also derive a dual problem,

which is the same as in equation (4), with the ad-

ditional constraint that each λi can not be bigger

than its cost ci. In other words, the dual problem

can not penalize the violation of a constraint more

than the soft constraint model in the primal would

penalize you if you violated it.

This optimization problem can still be solved

with projected subgradient descent and is depicted

in Algorithm 2. The only modifications to Al-

gorithm 1 are replacing the coordinate-wise pro-

jection Π0≤· with Π0≤·≤c and how we check for

convergence. Now, we check for the KKT con-

ditions of (5), where for every constraint i, either

the constraint is satisfied with equality, λi = 0, or

λi = ci.



Algorithm 2 Soft-DD: projected subgradient for

dual decomposition with soft constraints

1: while has not converged do

2: y(t) = argmaxy∈U

〈

w +ATλ, y
〉

3: λ(t) = Π0≤·≤c

[

λ(t−1)
− η(t)(Ay − b)

]

Therefore, implementing soft-constrained dual

decomposition is as easy as implementing hard-

constrained dual decomposition, and the per-

iteration complexity is the same. We encourage

further applications of soft-constraint dual decom-

position to existing and new NLP problems.

3.1 Learning Penalties

One consideration when using soft v.s. hard con-

straints is that soft constraints present a new train-

ing problem, since we need to choose the vector

c, the penalties for violating the constraints. An

important property of problem (5) in the previous

section is that it corresponds to a structured lin-

ear model over y and z. Therefore, we can apply

known training algorithms for estimating the pa-

rameters of structured linear models to choose c.

All we need to employ the structured perceptron

algorithm (Collins, 2002) or the structured SVM

algorithm (Tsochantaridis et al., 2004) is a black-

box procedure for performing MAP inference in

the structured linear model given an arbitrary cost

vector. Fortunately, the MAP problem for (5) can

be solved using Soft-DD, in Algorithm 2.

Each penalty ci has to be non-negative; other-

wise, the optimization problem in equation (5) is

ill-defined. This can be ensured by simple mod-

ifications of the perceptron and subgradient de-

scent optimization of the structured SVM objec-

tive simply by truncating c coordinate-wise to be

non-negative at every learning iteration.

Intuitively, the perceptron update increases the

penalty for a constraint if it is satisfied in the

ground truth and not in an inferred prediction, and

decreases the penalty if the constraint is satisfied

in the prediction and not the ground truth. Since

we truncate penalties at 0, this suggests that we

will learn a penalty of 0 for constraints in three cat-

egories: constraints that do not hold in the ground

truth, constraints that hold in the ground truth but

are satisfied in practice by performing inference

in the base CRF model, and constraints that are

satisfied in practice as a side-effect of imposing

non-zero penalties on some other constraints . A

similar analysis holds for the structured SVM ap-

proach.

Therefore, we can view learning the values of

the penalties not just as parameter tuning, but as a

means to perform ‘constraint selection,’ since con-

straints that have a penalty of 0 can be ignored.

This property allows us to consider large families

of constraints, from which the useful ones are au-

tomatically identified.

We found it beneficial, though it is not theoreti-

cally necessary, to learn the constraints on a held-

out development set, separately from the other

model parameters, as during training most con-

straints are satisfied due to overfitting, which leads

to an underestimation of the relevant penalties.

4 Citation Extraction Data

We consider the UMass citation dataset, first intro-

duced in Anzaroot and McCallum (2013). It has

over 1800 citation from many academic fields, ex-

tracted from the arXiv. This dataset contains both

coarse-grained and fine-grained labels; for exam-

ple it contains labels for the segment of all authors,

segments for each individual author, and for the

first and last name of each author. There are 660

citations in the development set and 367 citation

in the test set.

The labels in the UMass dataset are a con-

catenation of labels from a hierarchically-defined

schema. For example, a first name of an author is

tagged as: authors/person/first. In addition, indi-

vidual tokens are labeled using a BIO label schema

for each level in the hierarchy. BIO is a commonly

used labeling schema for information extraction

tasks. BIO labeling allows individual labels on

tokens to label segmentation information as well

as labels for the segments. In this schema, labels

that begin segments are prepended with a B, la-

bels that continue a segment are prepended with

an I, and tokens that don’t have a labeling in this

schema are given an O label. For example, in a hi-

erarchical BIO label schema the first token in the

first name for the second author may be labeled as:

I-authors/B-person/B-first.

An example labeled citation in this dataset can

be viewed in figure 1.

5 Global Constraints for Citation

Extraction

5.1 Constraint Templates

We now describe the families of global constraints

we consider for citation extraction. Note these



constraints are all linear, since they depend only

on the counts of each possible conditional ran-

dom field label. Moreover, since our labels are

BIO-encoded, it is possible, by counting B tags,

to count how often each citation tag itself appears

in a sentence. The first two families of constraints

that we describe are general to any sequence la-

beling task while the last is specific to hierarchical

labeling such as available in the UMass dataset.

Our sequence output is denoted as y and an ele-

ment of this sequence is yk.

We denote [[yk = i]] as the function that outputs

1 if yk has a 1 at index i and 0 otherwise. Here, yk
represents an output tag of the CRF, so if [[yk = i]]
= 1, then we have that yk was given a label with

index i.

5.2 Singleton Constraints

Singleton constraints ensure that each label can

appear at most once in a citation. These are same

global constraints that were used for citation field

extraction in Chang et al. (2012). We define s(i)
to be the number of times the label with index i is

predicted in a citation, formally:

s(i) =
∑

yk∈y

[[yk = i]]

The constraint that each label can appear at

most once takes the form:

s(i) <= 1

5.3 Pairwise Constraints

Pairwise constraints are constraints on the counts

of two labels in a citation. We define z1(i, j) to be

z1(i, j) =
∑

yk∈y

[[yk = i]] +
∑

yk∈y

[[yk = j]]

and z2(i, j) to be

z2(i, j) =
∑

yk∈y

[[yk = i]]−
∑

yk∈y

[[yk = j]]

We consider all constraints of the forms:

z(i, j) ≤ 0, 1, 2, 3 and z(i, j) ≥ 0, 1, 2, 3.

Note that some pairs of these constraints are re-

dundant or logically incompatible. However, we

are using them as soft constraints, so these con-

straints will not necessarily be satisfied by the out-

put of the model, which eliminates concern over

enforcing logically impossible outputs. Further-

more, in section 3.1 we described how our proce-

dure for learning penalties will drive some penal-

ties to 0, which effectively removes them from our

set of constraints we consider. It can be shown, for

example, that we will never learn non-zero penal-

ties for certain pairs of logically incompatible con-

straints using the perceptron-style algorithm de-

scribed in section 3.1 .

5.4 Hierarchical Equality Constraints

The labels in the citation dataset are hierarchical

labels. This means that the labels are the concate-

nation of all the levels in the hierarchy. We can

create constraints that are dependent on only one

or couple of elements in the hierarchy.

We define C(x, i) as the function that returns 1

if the output x contains the label i in the hierarchy

and 0 otherwise. We define e(i, j) to be

e(i, j) =
∑

yk∈y

[[C(yk, i)]]−
∑

yk∈y

[[C(yk, j)]]

Hierarchical equality constraints take the forms:

e(i, j) ≥ 0 (8)

e(i, j) ≤ 0 (9)

5.5 Local constraints

We constrain the output labeling of the chain-

structured CRF to be a valid BIO encoding.

This both improves performance of the underly-

ing model when used without global constraints,

as well as ensures the validity of the global con-

straints we impose, since they operate only on

B labels. The constraint that the labeling is

valid BIO can be expressed as a collection of

pairwise constraints on adjacent labels in the se-

quence. Rather than enforcing these constraints

using dual decomposition, they can be enforced

directly when performing MAP inference in the

CRF by modifying the dynamic program of the

Viterbi algorithm to only allow valid pairs of adja-

cent labels.

5.6 Constraint Pruning

While the techniques from section 3.1 can easily

cope with a large numbers of constraints at train-

ing time, this can be computationally costly, spe-

cially if one is considering very large constraint

families. This is problematic because the size



Unconstrained
[17]ref-marker [ D.first Sivia ,last person J.first Skilling ,last person ]authors [ Data Analysis : A Bayesian Tutorial
,booktitle Oxford University Press , publisher 2006 year date ]venue

Constrained
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Figure 2: Two examples where imposing soft global constraints improves field extraction errors. Soft-

DD converged in 1 iteration on the first example, and 7 iterations on the second. When a reference is

citing a book and not a section of the book, the correct labeling of the name of the book is title. In

the first example, the baseline CRF incorrectly outputs booktitle, but this is fixed by Soft-DD, which

penalizes outputs based on the constraint that booktitle should co-occur with an address label. In the

second example, the unconstrained CRF output violates the constraint that title and status labels should

not co-occur. The ground truth labeling also violates a constraint that title and language labels should

not co-occur. At convergence of the Soft-DD algorithm, the correct labeling of language is predicted,

which is possible because of the use of soft constraints.

Constraints F1 score Sparsity # of cons

Baseline 94.44

Only-one 94.62 0% 3

Hierarchical 94.55 56.25% 16

Pairwise 95.23 43.19% 609

All 95.39 32.96% 628

All DD 94.60 0% 628

Table 1: Set of constraints learned and F1 scores.

The last row depicts the result of inference using

all constraints as hard constraints.

of some constraint families we consider grows

quadratically with the number of candidate labels,

and there are about 100 in the UMass dataset.

Such a family consists of constraints that the sum

of the counts of two different label types has to

be bounded (a useful example is that there can’t

be more than one out of “phd thesis” and “jour-

nal”). Therefore, quickly pruning bad constraints

can save a substantial amount of training time, and

can lead to better generalization.

To do so, we calculate a score that estimates

how useful each constraint is expected to be. Our

score compares how often the constraint is vio-

lated in the ground truth examples versus our pre-

dictions. Here, prediction is done with respect to

the base chain-structured CRF tagger and does not

include global constraints. Note that it may make

sense to consider a constraint that is sometimes vi-

olated in the ground truth, as the penalty learning

algorithm can learn a small penalty for it, which

will allow it to be violated some of the time. Our

importance score is defined as, for each constraint

c on labeled set D,

imp(c) =

∑

d∈D[[maxyw
T
d y]]c

∑

d∈D[[yd]]c
, (10)

where [[y]]c is 1 if the constraint is violated on out-

put y and 0 otherwise. Here, yd denotes the ground

truth labeling and wd is the vector of scores for the

CRF tagger.

We prune constraints by picking a cutoff value

for imp(c). A value of imp(c) above 1 implies

that the constraint is more violated on the pre-

dicted examples than on the ground truth, and

hence that we might want to keep it.

We also find that the constraints that have the

largest imp values are semantically interesting.

6 Related Work

There are multiple previous examples of augment-

ing chain-structured sequence models with terms

capturing global relationships by expanding the

chain to a more complex graphical model with

non-local dependencies between the outputs. In-

ference in these models can be performed, for

example, with loopy belief propagation (Bunescu

and Mooney, 2004; Sutton and McCallum, 2004)

or Gibbs sampling (Finkel et al., 2005). Be-

lief propagation is prohibitively expensive in our



model due to the high cardinalities of the out-

put variables and of the global factors, which in-

volve all output variables simultaneously. There

are various methods for exploiting the combi-

natorial structure of these factors, but perfor-

mance would still have higher complexity than our

method. While Gibbs sampling has been shown

to work well tasks such as named entity recogni-

tion (Finkel et al., 2005), our previous experiments

show that it does not work well for citation extrac-

tion, where it found only low-quality solutions in

practice because the sampling did not mix well,

even on a simple chain-structured CRF.

Recently, dual decomposition has become a

popular method for solving complex structured

prediction problems in NLP (Koo et al., 2010;

Rush et al., 2010; Rush and Collins, 2012; Paul

and Eisner, 2012; Chieu and Teow, 2012). Soft

constraints can be implemented inefficiently using

hard constraints and dual decomposition— by in-

troducing copies of output variables and an aux-

iliary graphical model, as in Rush et al. (2012).

However, at every iteration of dual decomposition,

MAP must be run in this auxiliary model. Further-

more the copying of variables doubles the num-

ber of iterations needed for information to flow

between output variables, and thus slows conver-

gence. On the other hand, our approach to soft

constraints has identical per-iteration complexity

as for hard constraints, and is a very easy modifi-

cation to existing hard constraint code.

Initial work in machine learning for citation ex-

traction used Markov models with no global con-

straints. Hidden Markov models (HMMs), were

originally employed for automatically extracting

information from research papers on the CORA

dataset (Seymore et al., 1999; Hetzner, 2008).

Later, CRFs were shown to perform better on

CORA, improving the results from the Hmm’s

token-level F1 of 86.6 to 91.5 with a CRF(Peng

and McCallum, 2004).

Recent work on globally-constrained inference

in citation extraction used an HMMCCM , which is

an HMM with the addition of global features that

are restricted to have positive weights (Chang et

al., 2012). Approximate inference is performed

using beam search. This method increased the

HMM token-level accuracy from 86.69 to 93.92

on a test set of 100 citations from the CORA

dataset. The global constraints added into the

model are simply that each label only occurs

once per citation. This approach is limited in its

use of an HMM as an underlying model, as it

has been shown that CRFs perform significantly

better, achieving 95.37 token-level accuracy on

CORA (Peng and McCallum, 2004). In our ex-

periments, we demonstrate that the specific global

constraints used by Chang et al. (2012) help on the

UMass dataset as well.

7 Experimental Results

Our baseline is the one used in Anzaroot and

McCallum (2013), with some labeling errors re-

moved. This is a chain-structured CRF trained

to maximize the conditional likelihood using L-

BFGS with L2 regularization.

We use the same features as Anzaroot and Mc-

Callum (2013), which include word type, capital-

ization, binned location in citation, regular expres-

sion matches, and matches into lexicons. In addi-

tion, we use a rule-based segmenter that segments

the citation string based on punctuation as well as

probable start or end segment words (e.g. ‘in’ and

‘volume’). We add a binary feature to tokens that

correspond to the start of a segment in the output

of this simple segmenter. This final feature im-

proves the F1 score on the cleaned test set from

94.0 F1 to 94.44 F1, which we use as a baseline

score.

We then use the development set to learn the

penalties for the soft constraints, using the percep-

tron algorithm described in section 3.1. MAP in-

ference in the model with soft constraints is per-

formed using Soft-DD, shown in Algorithm 2.

We instantiate constraints from each template in

section 5.1, iterating over all possible labels that

contain a B prefix at any level in the hierarchy and

pruning all constraints with imp(c) < 2.75 cal-

culated on the development set. We asses perfor-

mance in terms of field-level F1 score, which is

the harmonic mean of precision and recall for pre-

dicted segments.

Table 1 shows how each type of constraint fam-

ily improved the F1 score on the dataset. Learning

all the constraints jointly provides the largest im-

provement in F1 at 95.39. This improvement in F1

over the baseline CRF as well as the improvement

in F1 over using only-one constraints was shown

to be statistically significant using the Wilcoxon

signed rank test with p-values < 0.05. In the

all-constraints settings, 32.96% of the constraints

have a learned parameter of 0, and therefore only



Stop F1 score Convergence Avg Iterations

1 94.44 76.29% 1.0

2 95.07 83.38% 1.24

5 95.12 95.91% 1.61

10 95.39 99.18% 1.73

Table 2: Performance from terminating Soft-DD

early. Column 1 is the number of iterations we

allow each example. Column 3 is the % of test

examples that converged. Column 4 is the aver-

age number of necessary iterations, a surrogate for

the slowdown over performing unconstrained in-

ference.

421 constraints are active. Soft-DD converges,

and thus solves the constrained inference prob-

lem exactly, for all test set examples after at most

41 iterations. Running Soft-DD to convergence

requires 1.83 iterations on average per example.

Since performing inference in the CRF is by far

the most computationally intensive step in the iter-

ative algorithm, this means our procedure requires

approximately twice as much work as running the

baseline CRF on the dataset. On examples where

unconstrained inference does not satisfy the con-

straints, Soft-DD converges after 4.52 iterations

on average. For 11.99% of the examples, the

Soft-DD algorithm satisfies constraints that were

not satisfied during unconstrained inference, while

in the remaining 11.72% Soft-DD converges with

some constraints left unsatisfied, which is possible

since we are imposing them as soft constraints.

We could have enforced these constraints as

hard constraints rather than soft ones. This exper-

iment is shown in the last row of Table 1, where

F1 only improves to 94.6. In addition, running

the DD algorithm with these constraints takes 5.21

iterations on average per example, which is 2.8

times slower than Soft-DD with learned penalties.

In Figure 2, we analyze the performance of

Soft-DD when we don’t necessarily run it to con-

vergence, but stop after a fixed number of itera-

tions on each test set example. We find that a large

portion of our gain in accuracy can be obtained

when we allow ourselves as few as 2 dual decom-

position iterations. However, this only amounts to

1.24 times as much work as running the baseline

CRF on the dataset, since the constraints are satis-

fied immediately for many examples.

In Figure 2 we consider two applications of our

Soft-DD algorithm, and provide analysis in the

caption.

We train and evaluate on the UMass dataset in-

stead of CORA, because it is significantly larger,

has a useful finer-grained labeling schema, and its

annotation is more consistent. We were able to ob-

tain better performance on CORA using our base-

line CRF than the HMMCCM results presented

in Chang et al. (2012), which include soft con-

straints. Given this high performance of our base

model on CORA, we did not apply our Soft-DD

algorithm to the dataset. Furthermore, since the

dataset is so small, learning the penalties for our

large collection of constraints is difficult, and test

set results are unreliable. Rather than compare our

work to Chang et al. (2012) via results on CORA,

we apply their constraints on the UMass data us-

ing Soft-DD and demonstrate accuracy gains, as

discussed above.

7.1 Examples of learned constraints

We now describe a number of the useful con-

straints that receive non-zero learned penalties

and have high importance scores, defined in Sec-

tion 5.6. The importance score of a constraint pro-

vides information about how often it is violated

by the CRF, but holds in the ground truth, and a

non-zero penalty implies we enforce it as a soft

constraint at test time.

The two singleton constraints with highest im-

portance score are that there should only be at

most one title segment in a citation and that there

should be at most one author segment in a cita-

tion. The only one author constraint is particu-

larly useful for correctly labeling editor segments

in cases where unconstrained inference mislabels

them as author segments. As can be seen in Table

3, editor fields are among the most improved with

our new method, largely due to this constraint.

The two hierarchical constraints with the high-

est importance scores with non-zero learned

penalties constrain the output such that number

of person segments does not exceed the number

of first segments and vice-versa. Together, these

constraints penalize outputs in which the number

of person segments do not equal the number of

first segments, i.e., every author should have a first

name.

One important pairwise constraint penalizes

outputs in which thesis segments don’t co-occur

with school segments. School segments label the

name of the university that the thesis was submit-

ted to. The application of this constraint increases

the performance of the model on school segments



Label U C +

venue/series 35.29 66.67 31.37
venue/editor/person/first 66.67 94.74 28.07
venue/school 40.00 66.67 26.67
venue/editor/person/last 75.00 94.74 19.74
venue/editor 77.78 90.00 12.22
venue/editor/person/middle 81.82 91.67 9.85

Table 3: Labels with highest improvement in F1.

U is in unconstrained inference. C is the results of

constrained inference. + is the improvement in F1.

dramatically, as can be seen in table 3.

An interesting form of pairwise constraints pe-

nalize outputs in which some labels do not co-

occur with other labels. Some examples of con-

straints in this form enforce that journal segments

should co-occur with pages segments and that

booktitle segments should co-occur with address

segments. An example of the latter constraint be-

ing employed during inference is the first example

in Figure 2. Here, the constrained inference pe-

nalizes output which contains a booktitle segment

but no address segment. This penalization leads

allows the constrained inference to correctly label

the booktitle segment as a title segment.

The above example constraints are almost al-

ways satisfied on the ground truth, and would be

useful to enforce as hard constraints. However,

there are a number of learned constraints that are

often violated on the ground truth but are still use-

ful as soft constraints. Take, for example, the con-

straint that the number of number segments does

not exceed the number of booktitle segments, as

well as the constraint that it does not exceed the

number of journal segments. These constraints

are moderately violated on ground truth examples,

however. For example, when booktitle segments

co-occur with number segments but not with jour-

nal segments, the second constraint is violated. It

is still useful to impose these soft constraints, as

strong evidence from the CRF allows us to violate

them, and they can guide the model to good pre-

dictions when the CRF is unconfident.

8 Conclusion

We introduce a novel modification to the stan-

dard projected subgradient dual decomposition al-

gorithm for performing MAP inference subject to

hard constraints to one for performing MAP in the

presence of soft constraints. In addition, we offer

an easy-to-implement procedure for learning the

penalties on soft constraints. This method drives

many penalties to zero, which allows users to auto-

matically discover discriminative constraints from

large families of candidates.

We show via experiments on a recent substantial

dataset that using soft constraints, and selecting

which constraints to use with our penalty-learning

procedure, can lead to significant gains in accu-

racy. We achieve a 17% gain in accuracy over

a chain-structured CRF model, while only need-

ing to run MAP in the CRF an average of less

than 2 times per example. This minor incremen-

tal cost over Viterbi, plus the fact that we obtain

certificates of optimality on 100% of our test ex-

amples in practice, suggests the usefulness of our

algorithm for large-scale applications. We encour-

age further use of our Soft-DD procedure for other

structured prediction problems.
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