
Window Extraction for Information Retrieval

Samuel Huston
Center for Intelligent Information Retrieval

University of Massachusetts Amherst
Amherst, MA, 01002, USA

sjh@cs.umass.edu

W. Bruce Croft
Center for Intelligent Information Retrieval

University of Massachusetts Amherst
Amherst, MA, 01002, USA

croft@cs.umass.edu

ABSTRACT

Proximity-based term dependencies have been proposed and
used in a variety of effective retrieval models. The execution
of these dependency models is commonly supported through
the use of positional inverted indexes. However, few of these
models detail how instances of proximate terms should be
extracted from the lists of positional data. In this study, we
investigate three algorithms for the extraction of windows
that span a range of assumptions about the reuse of terms
in multiple window instances. We observe that computed
collection statistics of unordered windows are significantly
affected by the choice of algorithm. We also observe that
retrieval efficiency and effectiveness of a state-of-the-art de-
pendence model are not significantly affected by the selec-
tion of window extraction algorithm.

1. INTRODUCTION
Dependency retrieval models have been repeatedly shown

to improve information retrieval performance over bag-of-
words retrieval models [1; 3; 7; 9; 10; 11]. A common ap-
proach in these models is to assert that all adjacent pairs of
query terms are dependent [1; 7; 9]. Windows of text that
contain the identified dependent pairs or sets of terms are
identified in each document. Features used in these retrieval
models can then be aggregated from the set of windows that
are identified in a particular document.

The execution of these dependency models is commonly
supported by positional indexes. See Witten et al. [13] for
a definition and discussion of this type of index. Positional
indexes provide access to the location of each instance of
each query term, in each indexed document.

However, very few dependency retrieval models specify
precisely how window instances should be identified using
these term-position lists. Implicit in these underspecified de-
pendency models is an assumption of how terms that could
occur in multiple windows should be treated. In this study,
we focus on the extraction of the ordered and unordered win-
dows originally used by Metzler and Croft [7] in the Markov

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

... A B A B ...

No Reuse

No Domination

All Terms Reused

Document

Figure 1: Example extracted sets of unordered win-
dows for each assumption of term reuse.

random field model framework. We note that similar win-
dows of are also used in other retrieval models, including:
BM25-TP [10], BM25-TP2 [12], and pDFR [9].

We discuss three possible assumptions of term reuse. We
detail corresponding window extraction algorithms. We dis-
cuss the theoretical efficiency bounds of each algorithm, then
experimentally test the impact of each algorithm. We ob-
serve that there is a significant difference between the col-
lection frequencies of windows extracted by each of these
algorithms. For the state- of-the-art sequential dependence
model (SDM) [7], we observe that, despite this, there is no
difference in retrieval effectiveness or retrieval efficiency, be-
tween each of the algorithms.

2. ASSUMPTIONS OF TERM REUSE
As mentioned there is a potentially important efficiency

and effectiveness trade-off for the extraction of ordered and
unordered windows. Several different algorithms can be de-
vised depending on choices of whether or not to reuse specific
term instances in multiple window instances.

We focus on three possible assumptions of term reuse: no-
reuse, no-domination, and all-terms-reused. Figure 1
shows an example of the windows extracted using each of
these assumptions. In general, the number of window in-
stances extracted under the no-reuse assumption is less than
or equal to the number of windows instances extracted un-
der the no-domination assumption. Similarly, the number
of instances extracted under the no-domination assumption
is less than or equal to the number of instances extracted
under the all-terms-reused assumption.

Algorithm Unordered-Windows-No-Reuse

1: INPUT: PostingIterator[] itrs
2: INPUT: w, window width
3: OUTPUT : WindowArray output
4: while true do
5: minPos = minPos(itrs)
6: maxPos = maxPos(itrs)
7: if (maxPos−minPos) < w then
8: output.add(window(itrs));
9: for i = 0; i < |itrs|; i = i+ 1 do
10: itr[i].next()
11: if itrs[i].done(); return output
12: end for
13: else
14: for i = 0; i < |itrs|; i = i+ 1 do
15: if itr[i].pos() == minPos then
16: itr[i].next()
17: if itrs[i].done(); return output
18: end if
19: end for
20: end if
21: end while

Algorithm Unordered-Windows-No-Domination

1: INPUT: PostingIterator[] itrs
2: INPUT: w, window width
3: OUTPUT : WindowArray output
4: while true do
5: minPos = minPos(itrs)
6: maxPos = maxPos(itrs)
7: if (maxPos−minPos) < w then
8: output.add(window(itrs));
9: end if
10: for i = 0; i < |itrs|; i = i+ 1 do
11: if itr[i].pos() == minPos then
12: itr[i].next()
13: if itrs[i].done(); return output
14: end if
15: end for
16: end while

We now propose three unordered window extraction algo-
rithms that extract sets of window instances matching each
of the term reuse assumptions. An unordered window is
defined over a set of dependent terms (often a pair), and
a window width. Each window instance must include one
instance of each term, and the distance from the first term
to the last term in the window instance must be less than
the width parameter, w.

First, the no-reuse assumption permits each term instance
to be present in at most one window instance. Following
this assumption, the Unordered-Windows-No-Reuse al-
gorithm details a process that extracts all unordered win-
dows that do not share any term instances. We observe that
this algorithm processes each posting list only once, so we
can bound the complexity of this algorithm at O(

∑
n

i
|posi|)

operations.
Second, the no-domination assumption allows a limited

amount of reuse of term instances. Observing that each ex-
tracted instance covers a specific region of the document,

Algorithm Unordered-Windows-All

1: INPUT: PostingIterator[] itrs
2: INPUT: w, window width
3: OUTPUT : WindowArray output
4: itr0 = itrs.pop()
5: while not itr0.done() do
6: output.addAll(

ExtractWindows(itrs, itr0.pos(), itr0.pos()))
7: itr0.next()
8: end while
9: return output;
10: function ExtractWindows(itrs, begin, end)
11: itri = itrs.pop()
12: while not itri.done()) do
13: nBegin = min(begin, itri.pos())
14: nEnd = max(end, itri.pos())
15: if newEnd− newBegin ≤ w then
16: if itrs is empty then
17: output.add(window(itrs));
18: else
19: output.addAll(

ExtractWindows(itrs, nBegin, nEnd))
20: end if
21: end if
22: itri.next()
23: end while
24: itri.reset()
25: itrs.push(itri)
26: return output;
27: end function

we can omit dominated windows. A window dominates
another when both share a starting position, and its end-
ing position is smaller than the dominated window. The
Unordered-Windows-No-Domination algorithm details
a process that extracts all non-dominated windows. Again,
this algorithm only processes each posting list once, so we
can bound the complexity at O(

∑
n

i
|posi|) operations. In

practice, it is reasonable to expect that this algorithm will
require slightly longer to execute than the Unordered-

Windows-No-Reuse algorithm above, as the term iterators
are not moved as rapidly.

Finally, the all-terms-reused assumption permits the reuse
of each term instance in all possible window instances. The
Unordered-Windows-All algorithm details a recursive
algorithm that extracts all possible window instances in the
document. Note that this assumption requires that each list
of positions must be processed several times to ensure that
all windows are extracted. So, the worst case complexity of
this algorithm is bounded at O(

∏
n

i
|itri|) operations. For

longer lists of positions, or larger values of n, this algorithm
is likely be considerably less efficient than both of the pre-
vious algorithms.

3. EXPERIMENTS
We now empirically evaluate the impact these different

assumptions of term reuse have on retrieval performance.
We measure three aspects: first, the collection frequency;
second, retrieval efficiency of each algorithm; and finally,
retrieval effectiveness of each algorithm.

We compare each of these algorithms in the context of the

Collection # Doc. # Terms # Topics

Robust-04 0.5 M 0.252 B 250
GOV2 25 M 22 B 150

ClueWeb-09-B 33 M 26 B 200
ClueWeb-09-A 201 M 123 B 200

Table 1: Summary of data sets used.

R
o
b
u
s
t−

0
4
−

ti
tl
e

R
o
b
u
s
t−

0
4
−

d
e
s
c
s

G
O

V
2
−

ti
tl
e
s

G
O

V
2
−

d
e
s
c
s

C
lu

e
0
9
−

B
−

ti
tl
e
s

C
lu

e
0
9
−

B
−

d
e
s
c
s

C
lu

e
0
9
−

A
−

ti
tl
e
s

C
lu

e
0
9
−

A
−

d
e
s
c
s

M
e
a
n
 C

o
lle

c
ti
o
n
 F

re
q
u
e
n
c
y

1
0
0
0

5
0
0
0

5
0
0
0
0

5
0
0
0
0
0

No Reuse

No Dominated

All

Figure 2: Mean collection frequencies extracted us-
ing three window extraction algorithms, for 8 re-
trieval settings (2 types of queries for 4 TREC col-
lections).

sequential dependence model [7]. That is, all adjacent pairs
of query terms are selected to be modeled as an ordered
window and as an unordered window. The width of the
ordered window is too small to permit any term reuse. So,
the focus of the study is on unordered windows. For all
experiments, the width of the extracted unordered windows
is set to 8.

For each of these experiments, we use 4 TREC collec-
tions: Robust-04, GOV2, Clueweb-09-Cat-B and Clueweb-
09-Cat-A. See Table 1 for the details of each collection. A
total of 600 unique topics are available for these collections.
Note that the topics for Clueweb-09-B are the same as the
topics available for ClueWeb-09-A. Each topic has two for-
mulations, a short title query, consisting of 1-4 terms, and
an longer description query of between 5 and 30 terms. In
accordance with previous research on the ClueWeb-09 col-
lection [4], we have removed all documents with a fusion-
spam-score lower than 60 from these collections. We imple-
ment each of the above window extraction algorithms using
the Galago retrieval framework 1.

3.1 Results
We start by measuring the collection frequency of un-

ordered windows for each collection, and query set. Figure 2
shows the mean collection frequency of unordered windows
of width 8, as extracted by each of the three algorithms,
for each TREC collection. All adjacent query terms from
each of the topics for each collection are used as the input
dependent query terms.

As expected, this data shows that theUnordered-Windows-

No-Reuse algorithm identify fewer window instances than
theUnordered-Windows-No-Domination algorithm, and
both identify fewer window instances that the Unordered-

Windows-All algorithm.
The observed differences in collection frequency between

1http://lemurproject.org/galago.php

R
o
b
u
s
t−

0
4
−

ti
tl
e

R
o
b
u
s
t−

0
4
−

d
e
s
c
s

G
O

V
2
−

ti
tl
e
s

G
O

V
2
−

d
e
s
c
s

C
lu

e
0
9
−

B
−

ti
tl
e
s

C
lu

e
0
9
−

B
−

d
e
s
c
s

C
lu

e
0
9
−

A
−

ti
tl
e
s

C
lu

e
0
9
−

A
−

d
e
s
c
s

M
e
a
n
 A

ve
ra

g
e
 P

re
c
is

io
n
 (

M
A

P
)

0
.0

0
0
.1

0
0
.2

0
0
.3

0

No Reuse

No Dominated

All

Figure 3: Mean average precision of SDM, using
each of the three assumptions of term reuse, in 8
retrieval settings.(2 types of queries for 4 TREC col-
lections).

R
o
b
u
s
t−

0
4
−

ti
tl
e

R
o
b
u
s
t−

0
4
−

d
e
s
c
s

G
O

V
2
−

ti
tl
e
s

G
O

V
2
−

d
e
s
c
s

C
lu

e
0
9
−

B
−

ti
tl
e
s

C
lu

e
0
9
−

B
−

d
e
s
c
s

C
lu

e
0
9
−

A
−

ti
tl
e
s

C
lu

e
0
9
−

A
−

d
e
s
c
s

A
ve

ra
g
e
 r

e
tr

ie
va

l
ti
m

e
 (

m
s
/q

u
e
ry

)

2
0
0

1
0
0
0

5
0
0
0

2
0
0
0
0

1
0
0
0
0
0

No Reuse

No Dominated

All

Figure 4: Average time to retrieve the top 1000 doc-
uments, using SDM, with each of the three assump-
tions of term reuse, in 8 retrieval settings.(2 types
of queries for 4 TREC collections).

the three algorithms are relatively small. The frequencies
of no-reuse extracted windows are around 10% lower than
the no-domination extracted windows, and the frequencies
of all-term- reuse windows are around 7% lower than
no-domination extracted windows, across all collections and
both types of queries.

Next, we investigate how retrieval effectiveness is affected
by each algorithm. For this experiment, we use optimized
the parameters for SDM, for each collection using a coordi-
nate ascent approach described by Metzler [8].

Figure 3 shows how each algorithm effects retrieval effec-
tiveness, as measured using mean average precision. We can
clearly see that there is almost no change in effectiveness for
each window extraction algorithm.

We observe similar results for other retrieval metrics, in-
cluding nDCG@20, P@20, and ERR@20. For each metric,
the Fisher randomization test was applied to all pairs of
results, for each collection and query type. No significant
differences were observed (α = 0.05).

Finally, we measure retrieval efficiency of each algorithm.
Given the complexity of each algorithm, we expect to ob-
serve that the no-reuse algorithm will execute faster than
the no-domination algorithm, which will execute faster than
the all algorithm. For this experiment, we implement sim-
ilar algorithms for the extraction of ordered windows. Even
though the output of the ordered window extraction algo-
rithms remains identical in all cases for SDM, the algorithm

may have some impact on retrieval efficiency. Through these
modifications, we aim to maximize any observed time differ-
ences between the assumptions.

Figure 4 shows the retrieval efficiency of each algorithm.
The retrieval efficiency of each algorithm is measured as the
time to retrieve the top 1000 documents, averaged over 5
repeated runs of all queries, for each tested collection, and
type of query.

We observe almost no difference in efficiency between the
no-reuse and no-domination algorithms. A small difference
(< 2%) is observed between the no-domination and all

algorithms in some cases. The standard deviation of the
reported mean processing times is computed to be less than
2% of the mean processing time for each collection.

4. RELATED WORK
While the experiments presented in this study focus on the

unordered windows used in SDM, these results are applica-
ble to several other effective dependency retrieval models.
For example, BM25-TP [10], and pDFR [9] both use simi-
lar unordered window features, but do not explicitly assert
how windows should be extracted from positional data, or
whether extracted windows may or may not share term in-
stances. However, as the width of the unordered windows in
these retrieval models are not larger than in SDM, we expect
to observe little difference in retrieval performance between
the three tested assumptions of term reuse.

There are a small number of dependency models that spec-
ify how to extract window instances from positional data.
First, a variant of BM25-TP [3] specifies how unordered win-
dows can be efficiently extracted from positional data. We
note that this algorithm produces a set of windows that is
similar to those produced using the assumption of no-term-
reuse. Second, BM25-Span [11] defines a text span as the
output of the provided span extraction algorithm.

Lv and Zhai [6] proposes an alternative approaches to in-
corporating term proximity into the evaluation of a docu-
ment. The positional language model scores documents at
a specific location in the document, term instances are then
propagated to the desired scoring position. So, this model
does not require windows to be identified in documents.

An alternative to extracting windows from sets of posi-
tional data, is to directly index the frequency or score of
the required windows. Heuristic approaches to indexing
term dependencies have been shown to improve retrieval ef-
ficiency [2; 5]. However, we note that these indexes also rely
on some unstated assumptions of term reuse.

5. CONCLUSIONS
Retrieval models that use windows to measure term de-

pendence have not specified exactly how term occurrence
is counted in these windows. In this study, we have de-
fined how window instances can be counted and investigated
possible trade-offs between retrieval efficiency and retrieval
effectiveness present in the extraction of window instances
for dependency models. We have identified three reason-
able assumptions of term reuse that could allow for different
retrieval performance. We present three corresponding al-
gorithms that extract the appropriate set of unordered win-
dows from lists of positional data for a given document.

We empirically tested the use of these algorithms in a re-
trieval system. From the observed data, there is no clear
reason to prefer any of these window algorithms. We ob-

serve that the collection frequency of the window increases
as more term reuse is permitted. However, we do not observe
any significant changes in retrieval effectiveness or retrieval
efficiency.

It is reasonable to expect that larger window widths will
increase the differences between the algorithms. In future
work, we plan to investigate the impact these assumptions
have on retrieval performance for retrieval models that use
larger window widths.

Acknowledgments

This work was supported in part by the Center for Intelli-
gent Information Retrieval and in part by NSF grant #CNS-
0934322. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect those of the sponsor.

References

[1] Michael Bendersky, Donald Metzler, and W. Bruce
Croft. Learning concept importance using a weighted
dependence model. In Proceedings of the third ACM

WSDM, pages 31–40, 2010.

[2] Andreas Broschart and Ralf Schenkel. High-
performance processing of text queries with tunable
pruned term and term pair indexes. ACM Trans. Inf.

Syst., 30(1):5:1–5:32, March 2012.

[3] Stefan Büttcher, Charles L. A. Clarke, and Brad Lush-
man. Term proximity scoring for ad-hoc retrieval on
very large text collections. In Proc. of the 29th ACM

SIGIR, pages 621–622, 2006.

[4] Gordon V. Cormack, Mark D. Smucker, and Charles
L. A. Clarke. Efficient and effective spam filtering and
re-ranking for large web datasets. Information retrieval,
14(5):441–465, 2011.

[5] S. Huston, A. Moffat, and W.B. Croft. Efficient in-
dexing of repeated n-grams. In Proc. of the 4th ACM

WSDM, pages 127–136. ACM, 2011.

[6] Y. Lv and C.X. Zhai. Positional language models for
information retrieval. In Proc. of the 32nd ACM SIGIR,
pages 299–306. ACM, 2009.

[7] D. Metzler and W.B. Croft. A markov random field
model for term dependencies. In Proc. of the 28th ACM

SIGIR, pages 472–479, 2005.

[8] Donald Metzler. Using gradient descent to optimize
language modeling smoothing parameters. In Proc. of

the 30th ACM SIGIR, pages 687–688, 2007.

[9] Jie Peng, Craig Macdonald, Ben He, Vassilis Pla-
chouras, and Iadh Ounis. Incorporating term depen-
dency in the dfr framework. In Proc. of the 30th ACM

SIGIR, pages 843–844, 2007.

[10] Yves Rasolofo and Jacques Savoy. Term proximity scor-
ing for keyword-based retrieval systems. In Proc. of the

25th ECIR, pages 207–218, 2003.

[11] Ruihua Song, Michael J. Taylor, Ji-Rong Wen, Hsiao-
Wuen Hon, and Yong Yu. Viewing term proximity from
a different perspective. In Proc. 30th ECIR, pages 346–
357, 2008.

[12] Krysta M. Svore, Pallika H. Kanani, and Nazan Khan.
How good is a span of terms?: exploiting proximity to
improve web retrieval. In Proc. of the 33rd ACM SIGIR,
pages 154–161, 2010.

[13] I.H. Witten, A. Moffat, and T.C. Bell. Managing gi-

gabytes: compressing and indexing documents and im-

ages. Morgan Kaufmann, 1999.

