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1 Introduction

Supervised relation extraction uses a pre-defined schema of relation types (such as born-in or
employed-by). This approach requires labeling textual relations, a time-consuming and difficult
process. This has led to significant interest in distantly-supervised learning. Here one aligns exist-
ing database records with the sentences in which these records have been “rendered”, and from this
labeling one can train a machine learning system as before [1, 2]. However, this method relies on
the availability of a large database that has the desired schema.

The need for pre-existing databases can be avoided by not having any fixed schema. This is the
approach taken by OpenIE [3]. Here surface patterns between mentions of concepts serve as rela-
tions. This approach requires no supervision and has tremendous flexibility, but lacks the ability to
generalize. For example, OpenIE may find FERGUSON–historian-at–HARVARD but does not know
FERGUSON–is-a-professor-at–HARVARD.

One way to gain generalization is to cluster textual surface forms that have similar meaning [4, 5,
6, 7]. While the clusters discovered by all these methods usually contain semantically related items,
closer inspection invariably shows that they do not provide reliable implicature. For example, a
cluster may include historian-at, professor-at, scientist-at, worked-at. However, scientist-at does
not necessarily imply professor-at, and worked-at certainly does not imply scientist-at. In fact, we
contend that any relational schema would inherently be brittle and ill-defined––having ambiguities,
problematic boundary cases, and incompleteness.

In response to this problem, we present a new approach: implicature with universal schemas. Here
we embrace the diversity and ambiguity of original inputs. This is accomplished by defining our
schema to be the union of all source schemas: original input forms, e.g. variants of surface patterns
similarly to OpenIE, as well as relations in the schemas of pre-existing structured databases. But
unlike OpenIE, we learn asymmetric implicature among relations and entity types. This allows us
to probabilistically “fill in” inferred unobserved entity-entity relations in this union. For example,
after observing FERGUSON–historian-at–HARVARD, our system infers that FERGUSON–professor-
at–HARVARD, but not vice versa.

At the heart of our approach is the hypothesis that we should concentrate on predicting source
data––a relatively well defined task that can be evaluated and optimized––as opposed to modeling
semantic equivalence, which we believe will always be illusive.

To reason with a universal schema, we learn latent feature representations of relations, tuples and en-
tities. These act, through dot products, as natural parameters of a log-linear model for the probability
that a given relation holds for a given tuple. We show experimentally that this approach significantly
outperforms a comparable baseline without latent features, and the current state-of-the-art distant
supervision method.
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2 Model

We use R to denote the set of relations we seek to predict (such as works-written in Freebase, or
the X–heads–Y pattern), and T to denote the set of input tuples. For simplicity we assume each
relation to be binary. Given a relation r ∈ R and a tuple t ∈ T the pair 〈r, t〉 is a fact, or relation
instance. The input to our model is a set of observed factsO, and the observed facts for a given tuple
Ot := {〈r, t〉 ∈ O}.

Our goal is a model that can estimate, for a given relation r (such as X–historian-at–Y) and a given
tuple t (such as <FERGUSON,HARVARD>) a score cr,t for the fact 〈r, t〉. This matrix completion
problem is related to collaborative filtering. We can think of each tuple as a customer, and each
relation as a product. Our goal is to predict how the tuple rates the relation (rating 0 = false, rating 1
= true), based on observed ratings in O. We interpret cr,t as the probability p (yr,t = 1) where yr,t
is a binary random variable that is true iff 〈r, t〉 holds. To this end we introduce a series of expo-
nential family models inspired by generalized PCA [8], a probabilistic generalization of Principle
Component Analysis. These models will estimate the confidence in 〈r, t〉 using a natural parameter
θr,t and the logistic function: cr,t := p (yr,t|θr,t) := 1

1+exp(−θr,t)
.

We follow[9] and use a ranking based objective function to estimate parameters of our models.

Latent Feature Model One way to define θr,t is through a latent feature model F. We measure
compatibility between relation r and tuple t as a dot product of two latent feature representations of
size KF: ar for relation r, and vt for tuple t. This gives θF

r,t :=
∑KF

k ar,kvt,k and corresponds to
the original generalized PCA that learns a low-rank factorization of Θ = (θr,t).

Neighborhood Model We can interpolate the confidence for a given tuple and relation based on
the trueness of other similar relations for the same tuple. In Collaborative Filtering this is referred as
a neighborhood-based approach [10]. We implement a neighborhood model N via a set of weights
wr,r′ , where each corresponds to a directed association strength between relations r and r′. Sum-
ming these up gives θN

r,t :=
∑
r′∈Ot\{r} wr,r′ .
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Entity Model Relations have selectional preferences: they allow only certain types in their ar-
gument slots. To capture this observation, we learn a latent entity representation from data. For
each entity e we introduce a latent feature vector te ∈ Rl. In addition, for each relation r and
argument slot i we introduce a feature vector di. Measuring compatibility of an entity tuple and
relation amounts to summing up the compatibilities between each argument slot representation and
the corresponding entity representation: θE

r,t :=
∑arity(r)
i=1

∑KE

k di,ktti,k.

Combined Models In practice all the above models can capture important aspects of the data.
Hence we also use various combinations, such as θN,F,E

r,t := θNr,t + θF
r,t + θE

r,t.

3 Experiments

Does reasoning jointly across a universal schema help to improve over more isolated approaches?
In the following we seek to answer this question empirically.

Data Our experimental setup is roughly equivalent to previous work [2], and hence we omit de-
tails. To summarize, we consider each pair 〈t1, t2〉 of Freebase entities that appear together in a
corpus. Its set of observed factsOt correspond to: Extracted surface patterns (in our case lexicalized
dependency paths) between mentions of t1 and t2, and the relations of t1 and t2 in Freebase. We
divide all our tuples into approximately 200k training tuples, and 200k test tuples. The total number
of relations (patterns and from Freebase) is approximately 4k.

1Notice that the neighborhood model amounts to a collection of local log-linear classifiers, one for each
relation r with weights wr .
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Predicting Freebase and Surface Pattern Relations For evaluation we use two collections of
relations: Freebase relations and surface patterns. In either case we compare the competing systems
with respect to their ranked results for each relation in the collection.

Our first baseline is MI09, a distantly supervised classifier based on the work of [1]. We also
compare against YA11, a version of MI09 that uses preprocessed pattern cluster features according
to [7]. The third baseline is SU12, the state-of-the-art Multi-Instance Multi-Label system by [11].
The remaining systems are our neighborhood model (N), the factorized model (F), their combination
(NF) and the combined model with a latent entity representation (NFE).

The results in terms of mean average precision (with respect to pooled results from each system) are
in the table below:

Relation # MI09 YA11 SU12 N F NF NFE
Total Freebase 334 0.48 0.52 0.57 0.52 0.66 0.67 0.69
Total Pattern 329 0.28 0.56 0.50 0.46

For Freebase relations, we can see that adding pattern cluster features (and hence incorporating more
data) helps YA11 to improve over MI09. Likewise, we see that the factorized model F improves
over N, again learning from unlabeled data. This improvement is bigger than the corresponding
change between MI09 and YA11, possibly indicating that our latent representations are optimized
directly towards improving prediction performance. Our best model, the combination of N, F and E,
outperforms all other models in terms of total MAP, indicating the power of selectional preferences
learned from data.

MI09, YA11 and SU12 are designed to predict structured relations, and so we omit them for results
on surface patterns. Look at our models for predicting tuples of surface patterns. We again see that
learning a latent representation (F, NF and NFE models) from additional data helps substantially
over the non-latent N model.

All our models are fast to train. The slowest model trains in just 30 minutes. By contrast, training
the topic model in YA11 alone takes 4 hours. Training SU12 takes two hours (on less data). Also
notice that our models not only learn to predict Freebase relations, but also approximately 4k surface
pattern relations.

4 Conclusion

We represent relations using universal schemas. Such schemas contain surface patterns as relations,
as well as relations from structured sources. We can predict missing tuples for surface pattern rela-
tions and structured schema relations. We show this experimentally by contrasting a series of popular
weakly supervised models to our collaborative filtering models that learn latent feature representa-
tions across surface patterns and structured relations. Moreover, our models are computationally
efficient, requiring less time than comparable methods, while learning more relations.

Reasoning with universal schemas is not merely a tool for information extraction. It can also serve
as a framework for various data integration tasks, for example, schema matching. In future work we
also plan to integrate universal entity types and attributes into the model.
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