
Two-Stage Learning to Rank for

Information Retrieval

Van Dang, Michael Bendersky, and W. Bruce Croft

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts Amherst
{vdang, bemike, croft}@cs.umass.edu

Abstract. Current learning to rank approaches commonly focus on
learning the best possible ranking function given a small fixed set of
documents. This document set is often retrieved from the collection us-
ing a simple unsupervised bag-of-words method, e.g. BM25. This can
potentially lead to learning a sub-optimal ranking, since many relevant
documents may be excluded from the initially retrieved set. In this paper
we propose a novel two-stage learning framework to address this problem.
We first learn a ranking function over the entire retrieval collection using
a limited set of textual features including weighted phrases, proximities
and expansion terms. This function is then used to retrieve the best pos-
sible subset of documents over which the final model is trained using a
larger set of query- and document-dependent features. Empirical eval-
uation using two web collections unequivocally demonstrates that our
proposed two-stage framework, being able to learn its model from more
relevant documents, outperforms current learning to rank approaches.

1 Introduction

Standard bag-of-words retrieval models such as BM25 or query likelihood have
the advantage of being fast enough to be executed over an entire document
index and yet effective enough to produce reasonably good results. However,
these methods can only make use of a very limited number of features based on
query term frequencies. In addition, the combination of these features is hard-
coded into the retrieval model.

In contrast, learning to rank approaches [1] to information retrieval allow re-
trieval systems to incorporate hundreds or even thousands of arbitrarily defined
features. Most importantly, these approaches automatically learn the most effec-
tive combination of these features in the ranking function based on the available
training data. As a result, learning to rank approaches have consistently outper-
formed the standard bag-of-words retrieval models [2] [3].

However, due to the expense of computing a large number of arbitrary fea-
tures, and the fact that many of these features are often not supported by the
standard document indexing structures, learning to rank models are not ap-
plied to the entire document index. Instead, in current practice, learning to rank
models operate in a two-stage fashion [1].



Fig. 1. An example query: “lower heart rate”. Higher recall at Stage A leads to better
early precision at Stage B .

Query “lower heart rate”

BM25 MSE

Relevant retrieved (Stage A) 30 73
NDCG@20 (Stage B) 19.88 58.88

At the first stage (Stage A), a simple bag-of-words model, e.g. BM25, is used
to retrieve a small set of highly ranked documents from the entire document
index. These retrieved documents, together with their human-assigned relevance
labels, are then used to train a learning to rank model at the second stage (Stage
B). At run-time, in response to user queries, the Stage A model is used again
to retrieve a small set of highly ranked documents, which are then re-ranked by
the Stage B model. Finally, the re-ranked results are presented to the user.

Given this re-ranking scheme, it is easy to see that while Stage B of the
learning to rank framework should focus on high precision at the top ranks,
especially for the purpose of web search, the model at Stage A should also aim for
higher recall. This is due to the fact that if a relevant document is not retrieved
at Stage A, it will never be surfaced to the top ranks at Stage B . Nevertheless,
the majority of the current learning to rank literature focuses primarily on a
variety of ways to improve the learned model at Stage B , while assuming that
the model at Stage A is fixed to a standard bag-of-words model (most commonly,
BM25) [4] [1]. This can potentially lead to learning a sub-optimal model, since
many relevant documents might be excluded from the initially retrieved set.

As an intuitive example, consider the query “lower heart rate” in Figure 1.
Figure 1 compares the performance of the learning to rank approach when for
stage Stage A we use either (a) a simple BM25 method, or (b) a state-of-the-
art query expansion method MSE [5]. Figure 1 shows that MSE retrieves twice
as many relevant documents compared to BM25 at Stage A. This improvement
in recall can be attributed, among other factors, to the fact that MSE uses
expansion terms such as hr, beta, block, exercise and bpm to enhance the original
query. The improvement in recall at Stage A results in a three-fold increase in
an NDCG@20 metric at Stage B .

Following the example in Figure 1, the retrieval model at Stage A plays two
important roles. The first role is to provide training data to train the model at
Stage B , while the second role is to provide an initial pool of documents for this
model to re-rank at run-time. Therefore, a more effective initial retrieval means
both more relevant documents in the training data, as well as more relevant
documents presented in the final ranking to the user.

Accordingly, in this paper, we propose an improved two-stage learning to
rank framework. It modifies the existing two-stage approach by replacing the
BM25 retrieval model at Stage A with a supervised learning approach that op-
erates efficiently on a document index. In particular, we train the retrieval model
at Stage A to improve the quality of the initial set of retrieved documents us-



ing a comprehensive set of textual features (which are available as a part of
the standard indexing structures), including weighted phrases, proximities, and
expansion terms.

While conceptually simple, the proposed change in the two-stage learning to
rank approach is highly effective. Our experiments on two web collections, with
both keyword and verbose queries, demonstrate that our framework significantly
outperforms the existing approach, regardless of the learning to rank algorithms
employed at Stage B . Our analyses confirm that using a better retrieval model at
Stage A leads to a more effective model at Stage B , better initial document rank-
ing, and consequently, better retrieval effectiveness. These results are consistent
across collections and different query types.

2 Model

In this section, we describe the theoretical underpinning and the implementation
details of the two-stage learning to rank framework. We begin by describing the
general framework in Section 2.1. Then, in Section 2.2 and Section 2.3 we focus
on the first and the second stages of the learning to rank process, respectively.

2.1 The Two-Stage Framework

Our proposed framework consists of two stages of learning. At Stage A, a ranker
is trained on the entire document corpus to retrieve the most relevant set of
documents from the collection. These documents are then used to train the
ranker at Stage B . At run-time, the ranker at Stage A is used to retrieve a set of
documents in response to a user query, which are then re-ranked by the ranker
at Stage B to produce the final ranking for the user.

By design, the ranker at Stage A is recall-oriented and the ranker at Stage B

is precision-driven. That is, the ranker at Stage A should be able to retrieve as
many relevant documents as possible. If it fails to retrieve a relevant document,
this document is neither annotated nor presented to the user at Stage B . Having
more relevant documents retrieved at Stage A provides the ranker at Stage B

with better data to learn from, as well as more potential for improving the final
ranking presented to the user.

Formally, the two-stage learning to rank framework can be defined as follows.
Let T =< q1, . . . , qm > be a training set of m queries and let C =< d1, . . . , dn >

be a retrieval corpus with n documents. Let MA be a ranking function defined
over the queries and the documents in the collections, such that

MA:T × C → R, (1)

A higher value of MA indicates a higher likelihood of document relevance to the
query.

Given some relevance metric of interest Λ (e.g., mean average precision), at
Stage A we seek a ranker M∗

A such that

M∗
A = argmax

MA

∑

q∈T

Λ(MA). (2)



Once M∗
A is set (we will discuss the process of optimization of Equation 2 in the

next section), we proceed to Stage B .
At Stage B , we seek to optimize ranker MB , which is defined as

MB : (qi ∈ T )× (dj ∈ D
(i)
M∗

A

) → R, (3)

where D
(i)
M∗

A

is a set of k highest ranked documents retrieved by the initial ranker

M∗
A in response to query qi.
Similarly to the case of MA, we seek to optimize the ranker MB with respect

to some relevance metric Λ such that

M∗
B = argmax

MB

∑

q∈T

Λ(MB ,M
∗
A). (4)

Following Equation 4, the optimized ranker M∗
B has a dependency on the initial

ranker M∗
A, since MB is trained over a set of documents D

(i)
M∗

A

retrieved by the

initial ranker.
Note that the two-stage learning to rank framework described in this section

can be simply reduced to the standard learning to rank approach by setting M∗
A

to be an unsupervised bag-of-words retrieval model such as BM25. Instead, in
the next section we will explore several more effective alternatives for the ranking
at Stage A.

2.2 Ranker M
∗

A

Current applications of learning to rank for information retrieval [4], [1] com-
monly use standard unsupervised bag-of-words retrieval models such as BM25
as the initial ranking function M∗

A. However, recent research demonstrates that
more complex retrieval models that incorporate phrases, term proximities and
expansion terms can significantly outperform the standard bag-of-word models,
especially in the context of large-scale web collections [6] [5] [7] [8] and longer,
more complex queries [9] [10].

Accordingly, in this paper we adopt two state-of-the art supervised retrieval
methods, WSD and MSE, as alternatives for the initial ranker M∗

A. Both of these
methods incorporate textual features beyond query terms and were shown to be
highly effective in prior work [6] [5].

Both of these methods are based on the parameterized concept weighting ap-
proach. They can incorporate arbitrary textual concepts (e.g., terms, phrases or
term proximities) and assign weights to query concepts via a weighted combina-
tion of importance features (such as concept frequency in a large web collection
or a Wikipedia title). Most generally, in the parameterized concept weighting
approach, the ranker MA is defined as follows:

MA(q, d) ,
∑

ϕ∈Φ

wϕ

∑

c∈q

ϕ(c)sc(c, d), (5)



where c are query concepts, Φ is a set of importance features associated with the
query concepts, and sc(c, d) is a frequency-based scoring function for concept
occurrences in document d (e.g., BM25 or query-likelihood).

The weights wϕ of the importance features in Equation 5 are optimized
using a learning to rank approach. This guarantees that the concept weights are
assigned such that a particular relevance metric (e.g., mean average precision) is
directly optimized. In this manner, WSD and MSE fit well in the two-stage learning
to rank framework since, by optimizing Equation 5, they directly produce the
most effective initial ranker M∗

A in Equation 2.
The methods WSD and MSE differ in their choice of the query concepts. While

WSD uses only concepts that explicitly occur in the query, MSE also incorporates
expansion terms from a variety of sources such as Wikipedia or an anchor text
into the query formulation. Thus, the MSE retrieval model often leads to a higher
relevant document recall and more diversity in the retrieved set [5]. For more
details about these methods, the readers can refer to Bendersky et al. [6] [5].

Note that bigram statistics are the most expensive features used by WSD

and MSE. They can be computed efficiently simply by building a bigram index.
In addition, although MSE employs query expansion, the number of expansion
terms is very small. As a result, both of these rankers are reasonably fast.

2.3 Ranker M
∗

B

Given the rankings of documents retrieved by M∗
A, along with the human an-

notated relevance labels, the task of the ranker at Stage B is to learn a high-
precision retrieval model M∗

B (see Equation 4). We adopt a standard learning-
to-rank approach that is widely used in previous work [11] [12] [1] [4] [13].

Given a set of training queries T =< q1, . . . , qm > and a set D
(i)
M∗

A

of the k

highest ranked documents by the initial ranker M∗
A for each query qi ∈ T , the

task is to learn a second ranker M∗
B to further optimize some relevance metric Λ

(e.g., normalized discounted cumulative gain). In contrast to M∗
A, the ranker M

∗
B

is not evaluated over the entire corpus, but rather over a relatively small fixed set

of documents. Therefore, it can make use of a larger set F (i,j) = {f
(i,j)
1 , f

(i,j)
2 , ...}

of arbitrarily defined features

f (i,j): (qi ∈ T )× (dj ∈ D
(i)
M∗

A

) → R,

over query-document pairs, without being prohibitively expensive to evaluate
even for large-scale web collections.

The ranker in Equation 3 is then defined as a function of features in the set
F (i,j)

MB(qi, dj) , g(F (i,j)).

g(F (i,j)) can be a linear combination of features (in linear models) or some form
of regression trees (in tree-based models).

To ensure a state-of-the-art effectiveness of ranker M∗
B , in this paper we

implement a set of features F (i,j), which incorporates a wide range of features



Table 1. Set of features F (i,j), used in the second stage by the M
∗

B ranker

Feature Document Section

TF, IDF, TF*IDF [Body, Anchor, Title, Whole page]
(min/max/sum/mean/var)
Number of covered query terms All
Document length All
BM25 All
Query Likelihood [Body, Anchor, Title, All]
(Two-stage/Dirichlet/JM smoothing)
Sequential Dependence [Body, Anchor, Title, All]
(Two-stage/Dirichlet/JM smoothing)
URL Length/Depth
Number of in-links
PageRank
Stopwords fraction/coverage All
Number of terms/Term entropy All
Score from M∗

A
All

used in the previous work on learning to rank [4] [14] [15] [7]. Table 1 provides
an overview of the implemented features.

Several learning to rank algorithms have been proposed to find the optimal
ranker M∗

B in Equation 4. They can be categorized into three approaches: point-
wise, pair-wise and list-wise. While the former two have the relevance measure Λ
built-in, the latter allows this function to be arbitrarily defined. Liu [1] provides
a good overview of various learning to rank methods. In this paper, we evaluate
the most competitive algorithms from each of the three classes above:

– MART [16] is a state-of-the-art regression model, which is an ensemble of
regression trees constructed using the boosting approach. Using regression
models for learning to rank has been known as the point-wise approach.

– RankBoost [17] is a pair-wise learning approach based on AdaBoost. It
learns a linear combination of weak rankers that minimizes pair-wise loss.
Each weak ranker consists of a single feature and a threshold that best
distinguishes between relevant and non-relevant documents. RankBoost has
been popular baseline in the learning to rank community.

– Coordinate Ascent [2] is a list-wise algorithm that can optimize any IR
measures directly. It cycles through each of the features and optimizes over
it while holding the others fixed until no more improvement is observed.

– LambdaMART [18] is the winning approach at the Yahoo! Learning to
Rank Challenge [19]. LambdaMART is derived from LambdaRank [12], which
uses neural networks to minimize pair-wise cost, scaled with the amount of
change in the target measure incurred when swapping these two documents.
This scaling approach has proven to be equivalent to list-wise optimization
[20]. Since LambdaMART uses MART to minimize LambdaRank scaled pair-
wise cost, it is essentially a list-wise method that works in a pair-wise fashion.

3 Related Work

The current learning to rank approach can be formulated as a two-stage process.
An initial model (Stage A) is first used to retrieve a sample of documents from



the entire collection index. A second model (Stage B) is used to re-rank these
documents before presenting them to users.

In this two-stage re-ranking scheme, it is critical for the Stage Amodel to have
a good coverage of relevant documents. The literature, however, has been con-
centrating primarily on developing more powerful models for the second stage,
while using simple bag-of-words models in the first stage [4] [1]. In contrast, our
focus in this paper is on improving the recall of the Stage A model with two
state-of-the-art learning techniques: WSD [21] and MSE [5]. The example in Figure
1 demonstrates the advantage of having a higher initial coverage, which is akin
to the situation in the pseudo relevance feedback, where an initial set of retrieved
documents for a query is used to modify the query and produce a new ranking.
As in the case of pseudo relevance feedback [22], we show that in the learning to
rank setting a better initial ranking produces a better final ranking.

There have been some studies on the effectiveness of the Stage A model.
Aslam et al. [23] have studied several document sampling strategies and shown
that some of them can improve the quality of the initial retrieved set over BM25.
These methods, however, are intended to be used during training only since some
of them do not aim to retrieve more relevant documents but rather those that
are “interesting” to the learning process. Donmez and Carbonell [24] propose
to further sub-sample the initial sample of documents using active learning in
order to focus the learning process on the most informative training instances,
which is again on the learning side of the framework. Our Stage A model, on
the contrary, aims to provide more relevant documents not only for the Stage B

model to learn from (training) but also to re-rank (run-time).
In addition, researchers have also examined how learning to rank models

(Stage B) are affected by different characteristics of the training data, such
as the sample size and the similarity among documents used for training [23]
[13], as well as different training metrics [20] [25] [13]. Since these studies are
independent of the methods used for retrieving the documents in the training
set, their findings should also apply in our framework.

As we described earlier, any learning to rank algorithm [17] [2] [11] [12]
can be applied in the second stage of our framework. These algorithms can
be broadly classified into three approaches: point-wise, pair-wise and list-wise.
The point-wise approach attempts to accurately predict the relevance label for
individual documents. Pair-wise methods focus instead on the ability to rank
relevant documents higher than the non relevant. List-wise techniques take the
entire ranked list as input and directly optimize retrieval measure defined upon
this list. Further details can be found in [1]. In our experiments, we consider four
popular algorithms across three classes: MART [16] (point-wise), RankBoost [17]
(pair-wise), Coordinate Ascent [2] and LambdaMART [18] (list-wise).

4 Experimental Setup

Our retrieval experiments are conducted on two TREC web collections: Gov2

and ClueWeb-B. Gov2 is a collection of web pages from the .gov domain crawled



in 2004. ClueWeb-B is the first segment of a larger web corpus (ClueWeb-A)
created in 2009. The corpus statistics are provided in Table 2.

Table 2. Summary of the Gov2 and ClueWeb-B collections.

Name #Docs Topic Numbers

Gov2 25,205,179 701-850

ClueWeb-B 50,220,423 1-100

We use two types of queries for evaluation. The first type are short keyword
queries (TREC topic titles), while the second type are verbose natural language
queries (TREC topic descriptions). Indri/Lemur 1 is used to build indexes and
perform retrieval experiments. At indexing time, all documents are stemmed
using Krovetz stemmer. The Dirichlet smoothing parameter µ is set to 2500
(the default Indri configurations). Stop-words removal are done only at query
time using the standard INQUERY stop list. All statistical significance tests are
performed using Fisher’s randomization test with 20,000 iterations and α < 0.05.

As mentioned in Section 2, we adopt the state-of-the-art Weighted Sequential

Dependence (WSD) and Multiple Source Expansion models (MSE) as our Stage A

model. WSD and MSE go beyond bag-of-words by representing each query using
not only explicit concepts from the query string but also latent concepts ob-
tained via pseudo relevance feedback. The weights for each of these concepts are
learned automatically using parametrized combination of importance features.
As candidates for Stage B models, we employ four competitive learning to rank
algorithms, namely MART [16] (list-wise), RankBoost [17] (pair-wise), Coordi-
nate Ascent [2] and LambdaMART [18] (list-wise). Following some studies on
the robustness of measures that are based on the entire ranked list [25], mean
average precision (MAP) is the optimization in both stages.

5 Stage B Evaluation

Though learning to rank algorithms proved to be effective in general [1], their
success on TREC data has been limited. In the Web Track 2011, for example,
while McCreadie et al. [14] achieved good results, Boytsov and Belova [26] found
that their learning to rank models do not provide consistent and substantial
improvements over a hand-tuned formula.

In order to study the impact of the Stage A model, we need the Stage B

model to be reasonably effective. Therefore, in this section we first study the
performance of the four candidate learning to rank algorithms. For this purpose,
we fix the Stage A model to be BM25. All the experiments are conducted using
3-fold cross-validation. In each fold, the training data is further split into two:
70% for training and 30% for validation. Fig. 2 (a) and (b) provides the results
on Gov2 and ClueWeb-B respectively.

1 http://www.lemurproject.org/



Fig. 2. Performance of the four learning to rank models.

BM25 MART LambdaMART RankBoost CA
10

15

20

25

30

35

M
A

P

BM25 MART LambdaMart RankBoost CA
10

15

20

25

M
A

P

(a) Gov2 〈title〉 (b) ClueWeb-B 〈title〉

Our results show that all four algorithms substantially outperform the BM25
baseline. This affirms the effectiveness of these algorithms, as well as the feature
set in Table 1. It is worth noting that our experiments only intend to make sure
our candidate Stage B models are indeed effective, but not to fully compare
the four algorithms, which would require evaluation on multiple datasets with
different characteristics.

Not surprisingly, both MART and LambdaMART are the least effective al-
gorithms, since tree-based models often require large number of training queries
to avoid over-fitting. As evidence, they are the top performing approaches on
the Yahoo! Learning to Rank data [19], which contains about 10K queries and
700 features. In contrast, our collections have less than 200 queries with about
100 features.

6 Stage A Evaluation

6.1 Effectiveness of the Two-Stage Learning to Rank

In this section, we evaluate the three Stage A models, namely BM25, WSD [21]
and MSE [5] with the Stage B model fixed to one of the four learning to rank
algorithms. Due to space limitations, we only present the results with Coordinate
Ascent (CA), simply because it is the best performing approach on our data.
Results with the other three algorithms, in fact, lead to the same conclusions.

Learning in both stages is also done with 3-fold cross-validation. Let us use
WSD/CA as the Stage A/Stage B models to explain the learning process. In each
fold, we first train WSD from the queries specified by the training data, using
documents from the entire retrieval collection. After that, this model is used to
retrieve the top 1000 documents for these queries, which are used to train a CA

model, marked as CA[WSD]. To evaluate this model, WSD is again used to retrieve
the top 1000 documents for the test queries, which are re-ranked by CA[WSD] to
produce the final ranking. Test results on both collections, and for both types of



Table 3. Performance comparison among three Stage A models – BM25, WSD and MSE –
with the Stage B model fixed to CA. Statistical significant differences are marked by ∗.

Gov2
〈title〉 〈description〉

NDCG@20 MAP NDCG@20 MAP
CA[BM25] 47.80 30.09 40.69 26.40
CA[WSD] 48.24 (+0.92%) 34.26∗(+13.86%) 43.87∗(+7.82%) 29.93∗(+13.37%)
CA[MSE] 50.19∗(+5.0%) 36.12∗(+20.0%) 45.27∗(+11.3%) 32.41∗(+22.7%)

ClueWeb-B
〈title〉 〈description〉

NDCG@20 MAP NDCG@20 MAP
CA[BM25] 28.36 24.14 22.07 15.32
CA[WSD] 30.93∗(+9.06%) 25.58 (+5.97%) 22.17 (+0.45%) 15.90 (+3.79%)
CA[MSE] 32.20∗(+13.5%) 27.19∗(+12.6%) 24.65∗(+11.7%) 16.74∗(+9.2%)

Table 4. Effectiveness of each of the three Stage A models in Recall and MAP. Sta-
tistical significant differences are marked by ∗.

Gov2
〈title〉 〈description〉

Recall MAP Recall MAP
BM25 59.49 22.35 59.82 23.28
WSD 74.56∗(+25.3%) 31.60∗(+41.4%) 68.03∗(+13.7%) 28.21∗(+21.2%)
MSE 75.85∗(+27.5%) 34.28∗(+53.4%) 69.66∗(+16.4%) 30.83∗(+32.4%)

ClueWeb-B
〈title〉 〈description〉

Recall MAP Recall MAP
BM25 66.81 15.72 50.50 11.46
WSD 73.13∗(+9.5%) 18.36∗(+16.8%) 55.02∗(+9.0%) 13.75∗(+20%)
MSE 75.37∗(+12.8%) 22.33∗(+42.1%) 58.11∗(+15.1%) 15.35∗(+34%)

queries, are reported using MAP and NDCG@20. Experiments with BM25 and
MSE are done similarly except that BM25 requires no training in the first stage.

Table 3 presents the results obtained with CA as the Stage B model. It is
obvious that CA with WSD and MSE as the Stage A models substantially outper-
forms the existing approaches (BM25). This is consistent across query types and
collections, confirming the importance of the Stage A model. MSE is the most
effective Stage A model. CA[MSE] achieves an average gain of 16% in MAP over
the CA[BM25] baseline.

6.2 Analysis

To understand why CA[MSE] and CA[WSD] are more effective than CA[BM25],
we examine Recall and MAP of the three Stage A models in Table 4. It is
clear that both WSD and MSE consistently outperform BM25 in both measures,
indicating that the former two methods provide more relevant documents for
CA to learn from (training) and to re-rank (test). In particular, MSE is the best
performing methods in both Recall and MAP, which confirms the importance of
query expansion at Stage A.

Given the results in Table 4, is the superior end-to-end performance of
CA[WSD] and CA[MSE] due to the fact that they enable better learning at Stage



B? Or do they perform better simply because they have more relevant docu-
ments to start with? To answer this question, we apply the models CA[WSD] and
CA[MSE] to re-rank documents retrieved by BM25. We denote these re-ranking
models as CA[WSD][BM25] and CA[MSE][BM25], respectively.

Table 5 reveals that both CA[WSD][BM25] and CA[MSE][BM25] achieve signif-
icantly higher NDCG@20 compared to CA[BM25]. However, the gains in MAP
are not as significant. This demonstrates that both a higher precision model and
a better relevant document coverage contribute to the substantial end-to-end
improvements presented in Table 3.

Table 5. Performance of our models on documents retrieved by BM25. Statistical sig-
nificant differences are marked by ∗.

Gov2
〈title〉 〈description〉

NDCG@20 MAP NDCG@20 MAP
CA[BM25][BM25] 47.80 30.09 40.69 26.40
CA[WSD][BM25] 48.20 (+0.8%) 30.27 (+0.6%) 42.69∗(+4.9%) 27.56∗(+4.4%)
CA[MSE][BM25] 50.29∗(+5.2%) 31.54∗(+4.8%) 44.57∗(+9.5%) 29.81∗(+12.9%)

ClueWeb-B
〈title〉 〈description〉

NDCG@20 MAP NDCG@20 MAP
CA[BM25][BM25] 28.36 24.14 22.07 15.32
CA[WSD][BM25] 30.07∗(+6.0%) 24.48 (+1.4%) 22.44 (+1.7%) 15.59 (+1.8%)
CA[MSE][BM25] 30.74∗(+8.4%) 25.34∗(+4.9%) 23.38(+5.9%) 15.47(+1.0%)

7 Conclusions

Learning to rank has been studied as a two-stage process where an initial ranker
(Stage A) retrieves a set of documents and a second model (Stage B) re-ranks
them before presenting to the users. The role of the initial ranker is very impor-
tant, yet often overlooked. Existing work usually deploys a simple bag-of-words
model such as BM25 at Stage A and focuses instead on developing complex
models for Stage B . In this paper, we show that using better models at Stage

A is a simple way of significantly improving the retrieval effectiveness of learn-
ing to rank. We empirically demonstrate that our approach helps (1) to train a
more effective learning to rank model for Stage B and (2) to provide more room
for the Stage B model to improve the final ranking. The resulting effectiveness
improvements are consistent across different collections and query types.

References

1. Liu, T.Y.: Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval 3(3) (2009) 225–331

2. Metzler, D., Croft, W.B.: Linear feature-based models for information retrieval.
Information Retrieval 10(3) (2007) 257–274



3. Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: SIGIR.
(2007) 391–398

4. Liu, T.Y., Xu, J., Qin, T., Xiong, W., Li, H.: LETOR: Benchmark Dataset for
Research on Learning to Rank for Information Retrieval. In: SIGIR. (2007)

5. Bendersky, M., Metzler, D., Croft, W.B.: Effective query formulation with multiple
information sources. In: WSDM. (2012) 443–452

6. Bendersky, M., Metzler, D., Croft, W.B.: Learning concept importance using a
weighted dependence model. In: WSDM. (2010) 31–40

7. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies.
In: SIGIR. (2005) 472–479

8. Peng, J., Macdonald, C., He, B., Plachouras, V., Ounis, I.: Incorporating term
dependency in the DFR framework. In: SIGIR. (2007) 843–844

9. Lease, M.: An improved markov random field model for supporting verbose queries.
In: SIGIR. (2009) 476–483

10. Lu, Y., Peng, F., Mishne, G., Wei, X., Dumoulin, B.: Improving Web search
relevance with semantic features. In: EMNLP. (2009) 648–657

11. Burges, C.J.C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,
Hullender, G.N.: Learning to rank using gradient descent. In: ICML. (2005) 89–96

12. Burges, C.J.C., Ragno, R., Le, Q.V.: Learning to Rank with Nonsmooth Cost
Functions. In: NIPS. (2006) 193–200

13. Macdonald, C., Santos, R., Ounis, I.: The whens and hows of learning to rank for
web search. Information Retrieval (2012) 1–45

14. McCreadie, R., Macdonald, C., Santos, R.L.T., Ounis, I.: University of glasgow at
trec 2011: Experiments with terrier in crowdsourcing, microblog, and web tracks.
In: TREC. (2011)

15. Bendersky, M., Croft, W.B., Diao, Y.: Quality-biased ranking of web documents.
In: WSDM. (2011) 95–104

16. Friedman, J.H.: Greedy function approximation: A gradient boosting machine.
Annals of Statistics 29 (1999) 1189–1232

17. Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm
for combining preferences. The Journal of Machine Learning Research 4 (2003)
933–969

18. Q. Wu, C.J.C. Burges, K.S., Gao, J.: Adapting boosting for information retrieval
measures. Information Retrieval 13(3) (2010) 254–270

19. O. Chapelle, Y.C.: Yahoo! learning to rank challenge overview. Machine Learning
Research - Proceedings Track 14 (2011) 1–24

20. Donmez, P., Svore, K.M., Burges, C.J.C.: On the local optimality of LambdaRank.
In: SIGIR. (2009) 460–467

21. Bendersky, M., Metzler, D., Croft, W.B.: Parameterized concept weighting in
verbose queries. In: SIGIR. (2011) 605–614

22. Metzler, D., Croft, W.B.: Latent concept expansion using markov random fields.
In: Proceedings of the Annual ACM SIGIR Conference. (2007) 311–318

23. Aslam, J.A., Kanoulas, E., Pavlu, V., Savev, S., Yilmaz, E.: Document selection
methodologies for efficient and effective learning-to-rank. In: SIGIR. (2009) 468–
475

24. Donmez, P., Carbonell, J.G.: Active sampling for rank learning via optimizing the
area under the roc curve. In: ECIR. (2009) 78–89

25. Yilmaz, E., Robertson, S.: On the choice of effectiveness measures for learning to
rank. Information Retrieval 13 (2010) 271–290

26. Boytsov, L., Belova, A.: Evaluating learning-to-rank methods in the web track
adhoc task. In: TREC. (2011)


