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Abstract

Many NLP tasks interact with syntax. The presence of a named entity span, for example,

is often a clear indicator of a noun phrase in the parse tree, while a span in the syntax can help

indicate the lack of a named entity in the spans that cross it. For these types of problems joint

inference offers a better solution than a pipelined approach, and yet large joint models are rarely

pursued. In this paper we argue this is due in part to the absence of a general framework for joint

inference which can efficiently represent syntactic structure.

We propose an alternative and novel method in which constituency parse constraints are

imposed on the model via combinatorial factors in a Markov random field, guaranteeing that a

variable configuration forms a valid tree. We apply this approach to jointly predicting parse and

named entity structure, for which we introduce a zero-order semi-CRF named entity recognizer

which also relies on a combinatorial factor. At the junction between these two models, soft

constraints coordinate between syntactic constituents and named entity spans, providing an

additional layer of flexibility on how these models interact. With this architecture we achieve the

best-reported results on both CRF-based parsing and named entity recognition on sections of the

OntoNotes corpus, and outperform state-of-the-art parsers on an NP-identification task, while

remaining asymptotically faster than traditional grammar-based parsers.

1 Introduction

Research in statistical parsing has made significant progress on recovering the kinds of annotations

found in treebank-annotated corpora (Collins, 2003; Petrov et al., 2006), but in practice parsing

is rarely an end in itself. Instead, parsing must be integrated with other forms of markup (part-of-

speech tagging, named-entity recognition, coreference resolution) in order to perform complete

end-to-end tasks like question answering. Historically, independent pursuit of these tasks has often

been accompanied by the belief that improvements on a measure intrinsic to parsing (for our domain,

often F1 on the test section of the Wall Street Journal) will accurately reflect improvements on an

end task when incorporated into a complete system.

Nevertheless, errors propagate in NLP pipelines, and the need for a consistent analysis across several

layers of linguistic structure has motivated the development of joint models in which uncertainty is

shared between individual model components. Previous work has applied joint inference to parsing

and named-entity recognition (NER), the task pursued in this paper, by augmenting the grammar

with specialized non-terminals which couple syntactic and NER labels to represent an analysis over

both domains (Finkel and Manning, 2009). This coupling proved to be beneficial to both tasks,

increasing parsing performance by 0.47 F1 and NER performance by 3.27 F1 on average over the

independently-trained models.



Yet there are many reasons one might be concerned with this approach. First, it is a problem-specific

formulation of a joint problem, and not necessarily extensible to problems that require a looser or

more flexible coupling between the two problem domains. For instance, the presence of an NER

span indicates the presence of a noun phrase in the corresponding syntax. NER spans are therefore

a subset of syntactic constituent spans, and the two problems can be represented with a single

tree-structured derivation. However, a joint model of prosody and parsing would be difficult to

capture with this approach, as boundaries of prosodic and syntactic spans are not required to overlap

(Selkirk, 1984; Jackendoff, 2002, Ch. 5, p. 118-123).

Second, formulating joint inference as context-free parsing also imposes a computational burden

at a particularly susceptible point in the algorithm. Consider the CKY algorithm’s complexity of

O(|G|n3), where |G| is the size of the grammar and n the length of the sentence. While algorithms

are generally compared in terms of their asymptotic complexity (here the property of being a

cubic-time algorithm), in many natural language problems the grammar constant is by far the most

computationally expensive component. In the grammar augmentation approach to joint inference,

the grammar constant increases as the product of the different domains’ label sets.

Perhaps the most limiting aspect of this approach is that it makes assumptions over what types of

structures are permissible, which may force the model structure of one problem into less intuitive

designs based on the structure of another. For instance, named entity recognizers have traditionally

been developed using sequence models, but some of the sequential model structure is lost when

conforming to a grammar-based notion of joint inference.1

All of the aforementioned criticisms will only become more pertinent when joint inference in NLP

begins to scale toward coupling the three or more problems in larger end-to-end systems. We

therefore present in this paper a more generalized approach to joint inference via combinatorial

factor constraints in factor graphs. In particular we describe a special-purpose combinatorial factor

for constraining syntactic variables to a valid constituent bracketing, providing an efficient and

flexible method for representing constituent syntax in graphical models. We first demonstrate that

on its own this simple parser setup is competitive in accuracy with more complex models at the

standard task of recovering treebank annotation. Then, we demonstrate the composability of the

factor graph approach by coupling the syntactic representation to a semi-Markov NER model and

performing inference jointly.

2 Parsing without a Grammar

While the dominant approaches to constituency parsing almost always depend on an explicit

grammar, efficiently representing grammatical parsing in frameworks as general as factor graphs is

very difficult. In this section we will discuss methods for representing constituency-style parsing

constraints in a factor graph. This general-purpose syntactic representation can then be flexibly

coupled to other tasks, and trained based upon common inference and learning methods.

A factor graph is a type of graphical model represented as a bipartite graph composed of variables,

whose values represent the state of the world, and factors, which specify potentials over the belief

of a particular state. For learning methods that require the marginal beliefs to compute a gradient,

factor graphs provide an efficient way of computing such marginals via message passing inference

algorithms.

1In this particular case, one could compose the context-free grammar with the finite-state model—causing the grammar

to grow even more. Similar problems arise in combining syntactic machine translation models with n-gram language models

(Vaswani et al., 2011).



The difficulty in representing grammars with factor graphs is that the complexity of inference

in such a graph scales exponentially in the size of the largest clique. Naively representing a

weighted grammar in Chomsky normal form requires variables to be densely connected with ternary

factors 2 to represent the application of a weighted grammar rule. This is not only computationally

problematic (on a per-iteration of inference basis), but could also further complicate convergence

when performing belief propagation, an efficient message passing inference algorithm (Pearl, 1988),

in the now exceedingly loopy graph.

If we were to back off from a desire to represent grammatical parsing in a factor graph, we could

impose a constraint which prohibits crossing brackets by examining variables in a pairwise manner

and assigning zero probability to configurations in which two conflicting variables were both on,

and this would be possible with a quartic number of constraining factors. But while both approaches

would capture the gist of a useful constraint, they are both computationally inefficient and will still

fail to prohibit all structures that are not valid trees.

Instead we introduce a special-purpose combinatorial factor, CKYTree. It was observed previously

(Smith and Eisner, 2008) that the outgoing messages from such combinatorial factors to a variable

could be computed from the factor’s posterior beliefs about that variable, thus defining an interface

for inserting special purpose logic within the standard inference algorithm. Instead of representing

a tree constraint externally in the structure of the model, we can encapsulate similar logic in this

factor where the computation can be done more efficiently with variants of standard dynamic

programming algorithms (Figure 1). Previous work has applied this technique to non-projective and

projective dependency parsing (Smith and Eisner, 2008; Naradowsky et al., 2012), and a similar

belief propagation approach has been used to enforce well-formed productions in CCG parsing

(Auli and Lopez, 2011).

More specifically, inputs to this algorithm are the span weights u(i, j). As in earlier dependency

parsing work, these weights are derived from the ratio of messages coming in from the Span

variables:

u(i, j) =
mSpan(i, j)→CKYTree(true)

mSpan(i, j)→CKYTree(false)

After running this inside-outside algorithm in O(n3) time, we calculate the O(n2) outgoing messages

from CKYTree:

mCKYTree→Span(i, j)(true) = g(i, j)

mCKYTree→Span(i, j)(false) = 1− u(i, j) · g(i, j)

Here g(i, j) is the gradient of the sum of the weights of all trees with respect to the input weight

u(i, j). Using the familiar inside β and outside α quantities, we can write this as:

g(i, j)
def

=
∂ β(0, n)

∂ u(i, j)
=
α(i, j)

β(0, n)

2Ternary factors connect three variables, in this case a parent span variable and two contained and adjacent child span

variables.



Algorithm 1 Bracket inside algorithm

1: function Inside(u, n)

2: for w← 2..n do

3: for i← 0..(n−w) do

4: k← i +w

5: s← 0

6: for j← (i+ 1)..(k− 1) do

7: s
⊕
←− β(i, j)⊗ β( j, k)

8: end for

9: β(i, k)← s⊕ u(i, k)

10: end for

11: end for

12: return β

13: end function

Algorithm 2 Bracket outside algorithm

1: function Outside(u,β , n)

2: for w← n..2 do

3: for i← 0..(n−w) do

4: k← i + w

5: for j← (i + 1)..(k− 1) do

6: α(i, j)
⊕
←− α(i, k)⊗ β( j, k)⊗ u(i, k)

7: α( j, k)
⊕
←− α(i, k)⊗ β(i, j)⊗ u(i, k)

8: g(i, k)
⊕
←− α(i, k)⊗ β(i, j)⊗ β( j, k)

9: end for

10: end for

11: end for

12: return g

13: end function

Figure 1: Bracket inference algorithms are special cases of the familiar inside and outside algorithms

for PCFGs (Baker, 1979) with a different “grammar-rule” weight u(i, j) for each span.

2.1 Bracket Model

Having introduced the necessary computational framework, we can now present our most basic

model of syntax: a factor graph for predicting unlabeled, projective binary constituency trees without

any representation of a grammar. We model the possible parses of an n-word sentence with the

following factor graph:3

• Let {Span(i, j) : 0 ≤ i < j ≤ n} be O(n2) boolean variables such that Span(i, j) = true iff

there is a bracket spanning i to j.4

• Let {Brack(i, j) : 0≤ i < j ≤ n} be O(n2) unary factors, each attached to the corresponding

variable Span(i, j). These factors score the independent suitability of each span to appear in

an unlabeled constituency tree.

• Let CKYTree be a global combinatorial factor attached to all the Span(i, j) variables. This

factor contributes a factor of 1 to the model’s score if the span variables collectively form a

legal, binary bracketing and a factor of 0 otherwise. It enforces, therefore, a hard constraint

on the variables. All outgoing messages from this factor are computed simultaneously by the

outside algorithm described above in §2.

This comprises the core of our parsing model, which couples local span-oriented factors with rich

features to a combinatorial factor that guarantees the global structure is a valid constituent tree.

Though it is lightweight, with a complexity of O(n3+n2) in comparison to O(|G|n3) of a traditional

CKY parser, it is not possible to identify which predicted spans are introduced through binarization

(because constituents are not labeled), and thus limits the validity of parser comparison. Instead of

evaluating this model in isolation, we immediately augment it with factors and variables to model

labeled constituency trees.

3Variables are denoted by italicized names, factors by small capitals.
4In practice, we do not need to include variables for spans of width 1 or n, since they will always be true.





2.3 Inference

With the exception of combinatorial factors, which have their own specialized propagators as

described above, inference is performed using the standard sum-product algorithm (Pearl, 1988),

also known as belief propagation (BP). Each node in the graph sends and receives messages of two

types:

A message from a variable node v to a factor node u is the product of all the messages from the

factor nodes connected to v excluding u itself.

mv→u(xv) =
∏

u∗∈N(v)/u

mu∗→v(xv)

Similarly, a message from a factor node u to a variable node v is the product of the factor and all

of the messages from neighboring variables, marginalizing over all neighboring variables with the

exception of xv .

mu→v(xv) =
∑

x ′u:x ′v=xv

fu(X
′
u
)
∏

v∗∈N(u)/v

mv∗→u(x
′
v∗
)

In cases where u is a combinatorial factor, its own combinatorial algorithm is executed instead of

the standard update, but inference otherwise continues without change.

Both the bracket and label models form non-loopy graphs and, in a manner analogous to the forward-

backward algorithm on chains, converge in two iterations of message passing. The robustness of

this approach to joint inference with syntax is that regardless of the model structure that may be

created for other tasks or couplings, the inference algorithm can remain the same. If loops arise in

the graph then the convergence guarantee is lost, but in practice we find that loopy BP, which is

fundamentally the same algorithm run on cyclic graphs, often converges within several iterations for

joint parsing and NER tasks.

2.4 Unary Re-writes

While our motivation here is to present a syntactic representation which can be used to the benefit

of a separate NLP end task, we also assess the performance of the parser independently, and

must therefore address the rather tangential issue of unary rewrites. In a context-free grammar,

internal unary productions—nonterminals with a single nonterminal child—fall out naturally from

the recursive definition of the model, but in our span-factored formulation they must be handled

separately. Similar work in conditional random field parsing (Finkel et al., 2008) collapses unary

rewrite chains to single augmented rules while prohibiting multiple rewrites from occupying the

same span, but this comes at the cost of additional complexity during decoding. Other work

has attempted to separately predict leaf-level unary rewrites, albeit for the purpose of improving

decoding speed (Bodenstab et al., 2011).

We follow the latter approach, pruning unary rewrites from the data entirely (replacing them with

their parent constituent) and training a separate log-linear classifier for reinserting unary rewrites into

the trees produced by the parser. Because the distribution of unary rewrites is so overwhelmingly

concentrated in the nodes immediately governing the leaves of the tree, we focus our efforts solely

on predicting these unary rewrites, accepting the performance hit of not predicting any which may

appear in the body of the tree (comprising between 11% and 15% of all unary spans newswire

sections of OntoNotes).



3 Named Entity Model

To demonstrate the usefulness of this syntactic representation in joint inference tasks, we choose to

evaluate primarily on the end task of named entity extraction. In contrast to previous work, we avoid

augmenting the grammar with special non-terminals and construct the model once again within

the context of a factor graph. This choice allows us to emphasize the sequential information that

historically has produced state-of-the-art performance.

As with parsing, however, incorporating some state-of-the-art models is not a trivial task. Consider

for instance a semi-Markov conditional random field (semi-CRF) model (Sarawagi and Cohen,

2004). The context-rich nature of these models is very difficult to capture within the top-down

derivations of a tree-based decoder for joint inference. Even in the general framework of a factor

graph, representing these structures efficiently in a manner compatible with the rest of the joint

architecture presents a challenge. However, we can once again encapsulate this logic within one

combinatorial factor and connect it in a global fashion to all variables corresponding to NER spans.

First, we assume a named entity variable set analogous to the LBM (denoted N ER-Span and

N ER-Label and behaving similarly).

• Let Semi-CRF be a combinatorial constraint connected to all N ER-Span(i, j) variables.

The factor implements a weighted Semi-CRF with a maximum span width µ, as described

in (Sarawagi and Cohen, 2004), over the log-odds of each span variable’s boolean values.

Unlike the valid-bracketing constraint imposed by the CKYTree factor, this effect can be

achieved with a polynomial number of binary factors. The O(µ2n2) such factors would lead

to inefficient inference in a very loopy factor graph. In all experiments µ= 10.

4 Joint NER and Parsing

Perhaps the main advantage of casting constituency parsing in terms of a factor graph is the ease

with which the model can be extended to improve separate but related task. To illustrate this, we

couple our LBM constituency parser to the span-based model of named-entity recognition with an

additional type of specialized factor:

• Let {NER-Nand(i, j) : 0 ≤ i < j ≤ n; 1 < j − i ≤ µ} be a set of at most O(n2) factors coor-

dinating syntactic Span(i, j) and named entity span variable N ER-Span(i, j), multiplying

in 1 unless both variables are on, in which case it multiplies a connective potential φ(i, j)

derived from its features. Intuitively the joint model might learn features weights such that

φ(i, j)> 1, i.e., constituents and NER spans are more likely to be coterminous. The number

of these coordinating factors is constrained to the number of NER span variables, subject to

the maximum span-width µ= 10.

These special purpose factors allow the model to learn how to best coordinate the sub-problems,

adding an additional layer of flexibility to the joint architecture. For this particular domain, features

that are useful for distinguishing noun phrase spans from other spans are good candidates, as

essentially all named entities correspond to noun phrases in the syntax.

5 Experiments

We have presented an argument for why the combinatorial factor graph approach to joint inference

can be considered a very general and principled framework for representing and reasoning over



Template Instantiated

General { j − i, i, j} LEN-3, START-13, END-16

CCM {POS(i − 1) + POS( j + 1), OUTER-RB-IN,

CC M(i, j) POS(i) + ...+ POS( j)} INNER-DT-VBG-NN

Unigram {Word(i), POS(i), WORD-shining, TAG-VBG,

U(i) Word(i) + POS(i), Capital izat ion?(i) WORD-POS-shining-VBG, CAP-FALSE

Bigram U(i)× U( j), U(i)× U( j +w), U(i −w)× U( j) SPOS0-EPOS0-DT-NN, SPOS+1-EWORD0-VBG-symbol,

B(i, j, w) POS(i −w) + ...+ POS(i +w)× U( j), ...} BG-EW-VBD-RB-DT-VBG-NN-symbol, ...

Variation { ContainsPOS(l), Contains(w), CONTAINS-POS-VBG, CONTAINS-WORD-shining

V (i, j, w) Tagset(i, j), Con jContains(i, j, w)} TAGSET- DT-VBG-NN, CONTAINS-WORD-SHINING, ...

DT JJ NN IN WP VBD RB |[DT VBG NN]| IN DT NN

the final chapter of what was once |[a shining symbol]| of the future.

Table 1: Common feature templates. Instantiations of these templates on the 13-16 span of the

example sentence are also provided. CCM refers to the features used by the constituent-context

model (Klein and Manning, 2002).

joint models. In this section we aim to demonstrate that these benefits are not merely conceptual

or aesthetic in nature, but translate to practical performance improvements in the model. In the

following sections we first demonstrate that parsers based on this architecture outperform previous

CRF parsers, and that they provide both an asymptotic advantage over state-of-the-art parsers in

decoding speed and an attractive compromise between speed and performance. We then show that

the semi-CRF NER model is a comparable baseline to previous standalone models, and that it

improves upon previous results when trained jointly.

5.1 Data

We primarily evaluate all of our model configurations on the same data set: a selection of six corpora

drawn from the English broadcast news section of the OntoNotes 2.0 dataset (Hovy et al., 2006).

The data are partitioned to achieve an approximately 3:1 ratio between training and test sets. This

is an exact reproduction of the partitioning found in (Finkel and Manning, 2009), where detailed

corpus statistics may be found. As in that work, we remove empty leaf nodes, coarsen nonterminal

labels (NP, not NP-PRD), and filter out sentences longer than 40 words. In supplementary parsing

experiments we make us of the OntoNotes Wall Street Journal Corpus distribution, using the standard

train/test split and sentences with between 3 and 40 words.

5.2 Features

For each of the models presented here, every boolean variable mentioned has a corresponding unary

factor representing its likelihood of being true. This leads to a wide-variety of features, depending

on the variable’s semantics.

For parsing we rely on features comparable to those used in edge-factored dependency parsing

(McDonald et al., 2005), consisting of combinations of unigram features (word, part-of-speech,

capitalization, and presence of punctuation) between the tokens at or near the span boundaries,

including tokens immediately outside and inside of the span. This allows us to capture very strong

lexical indications of a span, such as the presence of a comma immediately outside the start and

end of the indices. We also look for the occurrence of particular tags anywhere within the span,

which might signify that a constituent should not span those indices unless it is sufficiently large. A

previous generative model of span-based grammar induction (Klein and Manning, 2002) considered

the probability of a span to depend on the part-of-speech tags of the two words immediately outside

of it, and on the conjunction of the tags within it. For spans that are sufficiently small (here w < 10),



the part-of-speech tags of all words inside of the span are concatenated. Examples of these feature

sets are provided in Table 1. The reliance on part-of-speech tags as features is afforded through the

use of an existing maxent part-of-speech tagger (Toutanvoa and Manning, 2000) which allows us to

treat part-of-speech tags as observed while maintaining a fair comparison to other systems which

also do not utilize gold part-of-speech tags.

Features for the unary classifier portion of the model also consist of the same unigram features

(word, tag, capitalization, etc.), but are taken over 5-word windows from the tokens of the sentence.5

Features for NER spans are generally identical to those used for syntactic spans, while the feature sets

specifying span labels are much more lexically-oriented. In addition to a small set of contextually-

directed information we look primarily at word shape; character n-grams (windows of 2 to 5);

capitalization; normalization; regular expressions for initials, numerics, times, and Roman numerals;

and membership in a set of lexicons for ordinals, days of the week, months, scientific units, common

names, honorifics, and stop words.

5.3 Parsing Results

We present the results of the LBM on labeled parsing, largely in comparison to similar work using

CRF parsing with chart decoding (F&M‘09). The LBM significantly outperforms the previous

standalone approach in all data sets, yielding improvements of up to over nine points in F1 over this

model (Table 2). Though the models are generally quite similar, the large performance discrepancy

does raise the question of whether or not this could be due solely due to the unique hybrid approach

to parsing represented by the LBM over traditional methods, where local factors observe much

more information than can be traditionally utilized while still having strong top-down structural

constraints at play. It is possible that some of this gap is merely due to different feature sets, but

the feature set used here is by no means an exhaustive or fine-tuned set, comparable in size to the

features often used by graph-based dependency parsers.

In comparison to other widely available parsers, which are constructed using a vertical and horizontal

Markov window of 1 where applicable, the LBM does not achieve absolute state-of-the-art, but still

compares favorably to these established models on this data set, outperforming both configurations

of the Stanford Parser. It is important to note that these factor graph representations of syntax are

still extensible enough to incorporate non-terminal or grammar refinement, or reranking, to further

improve their performance. Our purpose in this section is simply to present them as a suitable

alternative to existing parsers and prove that the syntactic predictions upon which other tasks can be

jointly modeled are themselves quite accurate.

5.4 Decoding Efficiency

We compare against reference implementations of the PCFG parser (Klein and Manning, 2003) and

lexicalized parser included in the Stanford Parser distribution6, and train up comparable grammars

for all models from sections 2–21 of the Wall Street Journal Treebank corpus (Marcus et al., 1993).

Efficiency of the LBM is quite competitive with these models (Figure 3). When evaluated in its

standard configuration, with a full nonterminal set for each span, the LBM edges out the PCFG

5It is also possible to derive features from the parse tree, using the constituent labels collected by traversing the tree along

the root-to-leaf path. This results in an average of 4.63% F1 improvement on the unary prediction task over linear features,

but requires that the tree be decoded prior to generating unary productions. For convenience we predict the tree and its unary

productions simultaneously.
6V. 1.68, http://nlp.stanford.edu/software/lex-parser.shtml



Bracket Evaluation Labeled Evaluation

Data Model Prec Recall F1 CB NC Prec Recall F1

ABC

LBM 82.80 79.65 81.20 1.72 50.78 79.75 76.72 78.20

+Rules – – – – – 80.66 77.92 79.26

F&M ‘09 – – – 2.28 46.88 70.18 70.12 70.15

CNN

LBM 86.40 83.12 84.73 0.96 67.41 83.30 80.14 81.69

+Rules – – – – – 84.66 80.88 82.72

F&M ‘09 – – – 1.11 70.06 76.92 77.14 77.03

MNB

LBM 80.77 76.18 78.41 1.40 59.26 76.98 72.61 74.73

+Rules – – – – – 79.09 73.05 75.96

F&M ‘09 – – – 1.88 59.03 63.97 67.07 65.49

NBC

LBM 80.77 77.37 79.04 1.41 49.66 74.81 71.67 73.20

+Rules – – – – – 76.94 72.34 74.57

F&M ‘09 – – – 2.67 48.92 59.72 63.67 61.63

PRI

LBM 85.01 82.15 83.56 1.44 57.40 82.70 79.92 81.29

+Rules – – – – – 81.90 80.44 81.17

F&M ‘09 – – – 1.72 56.70 76.22 76.49 76.35

VOA

LBM 85.71 81.96 83.80 1.63 43.34 83.55 79.89 81.68

+Rules – – – – – 83.07 82.69 82.88

F&M ‘09 – – – 2.44 38.89 76.56 75.74 76.15

WSJ-Mod

LBM 84.88 80.33 82.54

+Rules 84.32

Stanford-PCFG 80.71 79.86 80.28

Stanford-Factored 81.64 81.65 81.64

Berkeley 86.61 85.81 86.21

Table 2: Labeled model performance. The feature-rich Labeled Bracket Model (LBM) provides

significant gains over previously published CRF parsing scores. Unlabeled parsing was evaluated

against the true, non-binarized bracketings. The +Rules model refers to the grammar-enhanced

version of the model described in Section §6. As in previous work, we find that in the joint setting

we find only marginal improvements in parsing F1, and abstain from providing them for the sake of

clarity.
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Figure 3: Decoding speeds. Comparing the performance of the labeled model, in both its standard

and pruned configuration, with standard PCFG and lexicalized parsing baselines (left), the factor

graph models generally decode faster than their counterparts. While featurization cost (inverted

triangle annotation) hinder the standard configuration, the pruned model is quite fast. When

comparing the grammar model to the PCFG model, and increasing the size of the grammar (right),

the additive grammar term provides a clear and substantial benefit as the grammar size increases.

model, the faster of the two baseline systems, but only marginally so. Additionally we indicate

the contribution that feature extraction time makes to overall decoding time by the carets above

the factor graph parser points. In the case of the standard LBM this removes any performance

benefit provided by the factor graph implementation over the PCFG. However, when combined with

pruning and reducing the binarized nonterminal set to use one, the LBM becomes a very attractive

choice, decoding almost twice as fast on 40-word sentences as the PCFG, and three times faster

than the lexicalized model.

The bracket model cannot offer competitive accuracy when compared to the other models and has

limited application given its output is only a set of projective spans. However, coupled with an

appropriate task it does offer exceptional parsing speed, decoding length 40 sentences at more than

10 per second on our test system, and may be useful as a component in select joint modeling tasks.

5.5 NER Results

We again evaluate on the OntoNotes corpus, which contains both syntactic and named entity

annotation, training our model with 10 iterations of stochastic gradient descent (SGD), each with 5

iterations of BP, evaluating on the more difficult full 16-entity label set. Results are presented in

Table 3.

Both baseline systems, trained without any syntactic information, perform comparably on average.

This is somewhat surprising given the sequential constraints of our NER model, but likely also due

in part to the less difficult 4-label NER task reported in previous results. However, we see stronger

than average gains by coupling the models and using joint inference. For instance, the factor graph

model outperforms the previous best results on four of the six data sets, but improves over it by a

much larger margin than the F&M system does on the two data sets it performs best in.



Prec Recall F1 F&M ‘09

ABC
NER Only 76.4 67.8 72.13 74.51

NER Joint 76.5 71.3 73.93 74.91

CNN
NER Only 75.2 75.0 75.07 75.78

NER Joint 79.2 79.9 79.56 78.70

MNB
NER Only 68.9 70.1 69.50 62.21

NER Joint 72.7 71.3 72.02 66.49

NBC
NER Only 69.5 61.8 65.69 63.90

NER Joint 73.3 67.0 70.18 67.96

PRI
NER Only 80.3 82.6 81.50 83.44

NER Joint 86.9 86.6 86.71 86.34

VOA
NER Only 81.4 74.8 78.11 79.23

NER Joint 86.4 88.1 87.23 88.18

Table 3: NER baseline and joint model performance. Decoding jointly consistently improves the

NER results across all corpora, providing the largest gains on corpora with the most data and best

parser performance. In comparison to F&M ‘09, our joint model outperforms in all but two of the

corpora.

6 Grammar Rules as Factors

Our final extension, the incorporation of grammar rules into the model, requires only the addition of

rule factors that connect triples of labeled span variables:

• Let {Rule(i, j, k, X , Y, Z) : 0 ≤ i < j < k ≤ n; X , Y, Z ∈ L}, be a sparsely-applied set of

ternary factors which coordinate across the Label variables at spans (i, j), ( j, k), and (i, k).

The difficulty in constructing a rule-based augmentation is not as much structural as it is about

finding an efficient way to add rules to the model. It is easy to enumerate the O(|L|n2) potentials

necessary for the LBM, but it becomes prohibitive to work with the O(|L|3n3) potentials that

represent a complete grammar.

Figure 4 illustrates a rule factor constraining three Label variables. Grammar rules don’t function

in the traditional way, where rules guide a set of allowable derivations. Instead, a Rule factor may be

instantiated across any triplet of nonterminals to alter the local Span and Label beliefs. Each rule

has a single primary feature: its string representation (NP→ NP VP), though we do also incorporate

back-off features for smoother statistics (X→ NP VP, NP→ X VP). The ease with which the LBM

can be augmented with rules is due to the factorization of the Label variables into large sets of

binary variables, instead of one high-dimensional multinomial, for each span.

To learn a sparse set of grammar rules, we used perceptron updates. After decoding a set of training

sentences, we computed the difference between the rule applications in the hypothesized and true

trees, and updated the weights of those productions accordingly. This creates grammars of roughly

1200 productions on both OntoNotes and WSJ and significantly outperforms the LBM results

(Table 2).

Figure 3 illustrates the performance of the grammar model in comparison to a PCFG as we artificially

increase the size of the grammar (sentences were fixed at length 40). Our model is unlexicalized

and coarse-grained, so simply constructing a grammar by reading off the productions found in the

WSJ treebank yields only 2751 rules. While the intent of developing this model is specifically for

fast joint inference, lexicalizing the grammar or refining it via a split-merge procedure to bring





Model NP-P NP-R NP-F1

LBM 90.07 90.02 90.42

+Rules 90.15 91.07 90.60

Stanford-PCFG 83.88 85.74 84.80

Stanford-Factored 85.07 87.83 86.43

Berkeley 89.17 90.96 90.06

Table 4: NP prediction results. While some established parsers outperform LBM in general parsing

F1 (82.54 LBM vs. 86.21 Berkeley), LBM outperforms all evaluated parsers on a measure more

reflective of its potential to many joint modeling scenarios, while remaining asymptotically faster.

and effectiveness of using these combinatorial syntactic representations in joint inference tasks,

generally improving performance on named entity recognition over the previous state-of-the-art.

As a standalone parser, both the LBM and rule model provide some decoding efficiency benefit

over PCFG and lexicalized baselines, while providing parsing results comparable with the best

coarse-grammar, unlexicalized parsers. We also showed how labeling spans via a set of boolean

label variables allows ternary factors to function as grammatical rules, not specifying an entire

derivation but instead fixing up trees in situations where the LBM would otherwise err.

One natural extension to the parser portion of this work is to port over useful advances from the pars-

ing literature, lexicalizing the grammar or refining the nonterminal set. However, it is also possible

to exploit other aspects of the factor graph representation. Most pertinent to parsing performance, a

factor graph allows for arbitrary constraints between variables—a potentially promising avenue for

incorporating additional linguistic information (headedness, lexicalization, agreement) in unique and

powerful ways. This approach would be particularly interesting for languages whose dependencies

are hard to capture with the traditional independence assumptions made by PCFGs. The more

inherently distributed structure of this model would also make it a good choice for parallelization.
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