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Abstract

Linear chains and trees are basic building blocks in many applications of graphi-
cal models, and they admit simple exact maximum a-posteriori (MAP) inference
algorithms based on message passing. However, in many cases this computa-
tion is prohibitively expensive, due to quadratic dependence on variables’ domain
sizes. The standard algorithms are inefficient because they compute scores for
hypotheses for which there is strong negative local evidence. For this reason
there has been significant previous interest in beam search and its variants; how-
ever, these methods provide only approximate results. This paper presents new
exact inference algorithms based on the combination of column generation and
pre-computed bounds on terms of the model’s scoring function. While we do
not improve worst-case performance, our method substantially speeds real-world,
typical-case inference in chains and trees. Experiments show our method to be
twice as fast as exact Viterbi for Wall Street Journal part-of-speech tagging and
over thirteen times faster for a joint part-of-speed and named-entity-recognition
task. Our algorithm is also extendable to new techniques for approximate infer-
ence, to faster 0/1 loss oracles, and new opportunities for connections between
inference and learning. We encourage further exploration of high-level reasoning
about the optimization problem implicit in dynamic programs.

1 Introduction

Many uses of graphical models either directly employ chains or tree structures—as in part-of-speech
tagging—or employ them to enable inference in more complex models—as in junction trees and tree
block coordinate descent [1]. Traditional message-passing inference in these structures requires an
amount of computation dependent on the product of the domain sizes of variables sharing an edge
in the graph. Even in chains, exact inference is prohibitive in tasks with large domains due to the
quadratic dependence on domain size. For this reason, many practitioners rely on beam search or
other approximate inference techniques [2]. However, inference by beam search is approximate.
This not only hurts test-time accuracy, but can also interfere with parameter estimation [3].

We present a new algorithm for exact MAP inference in chains that is substantially faster than Viterbi
in the typical case. We draw on four key ideas: (1) it is wasteful to compute and store messages to
and from low-scoring states, (2) it is possible to compute bounds on data-independent (not varying
with the input data) scores of the model offline, (3) inference should make decisions based on local
evidence for variables’ values and rely on the graph only for disambiguation [4], and (4) runtime
behavior should adapt to the cost structure of the model (i.e., the algorithm should be energy-aware
[5]). The combination of these ideas yields provably exact MAP inference for chains and trees that
can be more than an order of magnitude faster than traditional methods. Our algorithm has wide-
ranging applicability, and we believe it could beneficially replace many traditional uses of Viterbi
and beam search.

∗The first two authors contributed equally to this paper.
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We exploit the connections between message-passing algorithms and LP relaxations for MAP infer-
ence. Directly solving LP relaxations for MAP using a state-of-the-art solver is inefficient because
it ignores key structure of the problem [6]. However, it is possible to leverage message-passing as a
fast subroutine to solve smaller LPs, and use high-level techniques to compose these solutions into
a solution to the original problem.

With this interplay in mind, we employ column generation [7], a family of approaches to solving
linear programs that are dual to cutting planes: they start by solving restricted primal problems,
where many LP variables are set to zero, and slowly add other LP variables until they are able to
prove that adding no other variable can improve the solution. From these properties of column
generation, we also show how to perform approximate inference that is guaranteed not to be worse
than the optimal by a given gap, how to construct an efficient 0/1-loss oracle by running 2-best
inference in a subset of the graphical model, and how to learn parameters in such a way to make
inference even faster.

The use of column generation has not been widely explored or appreciated in graphical models.
This paper is intended to demonstrate its benefits and encourage further work in this direction.
We demonstrate experimentally that our method has substantial speed advantages while retaining
guaranteed exact inference. In Wall Street Journal part-of-speech tagging our method is more than
2.5 times faster than Viterbi, and also faster than beam search with a width of two. In joint POS
tagging and named entity recognition, our method is thirteen times faster than Viterbi and also faster
than beam search with a width of seven.

2 Delayed Column Generation in LPs

In LPs used for combinatorial optimization problems, we know a priori that there are optimal solu-
tions in which many variables will be set to zero. This is enforced by the problem’s constraints or it
characterizes optimality (e.g., the solution to a shortest path LP would not include multiple paths).
Column generation is a technique for exploiting this sparsity for faster inference. It restricts an LP
to a subset of its variables (implicitly setting the others to zero) and alternates between solving this
restricted linear program and selecting which variables should be added to it, based on whether
they could potentially improve the objective. When no candidates remain, the current solution to the
restricted problem is guaranteed to be the exact solution of the unrestricted problem.

The test to determine whether un-generated variables could potentially improve the objective is
whether their reduced cost is positive, which is also the test employed by some pivoting rules in
the simplex algorithm [8, 7]. The difference between the algorithms is that simplex enumerates
primal variables explicitly, while column generation “generates” them only as needed. The key to
an efficient column generation algorithm is an oracle that can either prove that no variable with
positive reduced cost exists or produce one.

Consider the general LP:

max. cTx s.t. Ax ≤ b, x ≥ 0 (1)

With corresponding Lagrangian:

L(x, λ) = cTx+ λt (b−Ax) = Σi

(

ci −AT
i λ

)

xi + λtb. (2)

For a given assignment to the dual variables λ, a variable xi is a candidate for being added to the
restricted problem if its reduced cost ri = ci − AT

i λ, the scalar multiplying it in the Lagrangian, is
positive. Another way to justify this decision rule is by considering the constraints in the LP dual:

min. bTλ s.t. ATλ ≥ c λ ≥ 0 (3)

Here, the reduced cost of a primal variable equals the degree to which its dual constraint is violated,
and thus column generation in the primal is equivalent to cutting planes in the dual [7]. If there is
no variable of positive reduced cost, then the current dual variables from the restricted problem are
feasible in the unrestricted problem, and thus we have a primal-dual optimal pair, and can terminate
column generation. An advantageous property of column generation that we employ later on is that
it maintains primal feasibility across iterations, and thus it can be halted to provide approximate,
anytime solutions.
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3 Connection Between LP Relaxations and Message-Passing in Chains

This section provides background showing how the LP formulation of the inference problem in
chains leads to the known message-passing algorithm. The derivation follows Wainwright and Jor-
dan [9], but is specialized for chains and highlights connections to our contributions.

The LP for MAP inference in chains is as follows

max.
∑

i,xi
µi(xi)θi(xi) +

∑

i,xi,xi+1
µi(xi, xi+1)τ(xi, xi+1)

s.t.
∑

xi
µi(xi) = 1 ∀i

∑

xi
µi(xi, xi+1) = µi+1(xi+1) ∀i, xi+1

∑

xi+1
µi(xi, xi+1) = µi(xi) ∀i, xi

(4)

where θi(xi) is the score obtained from assigning the i-th variable to value xi, µi(xi) is an indica-
tor variable saying whether or not the MAP assignment sets the i-th variable to the value xi, and
τ(xi, xi+1) is the score the model assigns to a transition from value xi to value xi+1. It’s implicitly
assumed that all variables are positive. We assume a static τ , but all statements trivially generalize
to position-dependent τi.

We can restructure this LP to only depend on the pairwise assignment variables µi(xi, xi+1) by
creating an edge between the last variable in the chain and an artificial variable and then “billing”
all local scores to the pairwise edge that touches them from the right. Then we restructure the
constraints to sum out both sides of each edge, and add indicator variables µn(xn, ·) and 0-scoring
transitions for the artificial edge. This leaves the following LP (with dual variables written after their
corresponding constraints).

max.
∑

i,xi,xi+1
µi(xi, xi+1)(τi(xi, xi+1) + θi(xi))

s.t.
∑

xn
µn(xn, ·) = 1 (N)

∑

xi−1
µi−1(xi−1, xi) =

∑

xi+1
µi(xi, xi+1) (αi(xi))

(5)

The dual of this linear program is

min. N
s.t. αi+1(xi+1)− αi(xi) ≥ τ(xi, xi+1) + θi(xi) ∀i, xi, xi+1

N − αn(xn) ≥ θn(xn) ∀xn

(6)

and setting the α dual variables by

αi+1(xi+1) = max
xi

αi(xi) + θi(xi) + τ(xi, xi+1) (7)

and N = maxxn
αn(xn) + θn(xn) is a sufficient condition for dual feasibility, and as N will

have the value of the primal solution, for optimality. Note that this equation is exactly the forward
message-passing equation for max-product belief propagation in chains, i.e. the Viterbi algorithm.

A setting of the dual variables is optimal if maximization of the problem’s Lagrangian over the
primal variables yields a primal-feasible setting. The coefficients on the edge variables µi(xi, xi+1)
are their reduced costs,

αi(xi)− αi+1(xi+1) + θi(xi) + τ(xi, xi+1). (8)

For duals that obey the constraints of (6), it is clear that the maximal reduced cost is zero, when xi

is set to the argmax used when constructing αi+1(xi+1). Therefore, to a obtain a primal-optimal
solution, we start at the end of the chain and follow the argmax indices to the beginning, which is
the same backward sweep of the Viterbi algorithm.

3.1 Improving the reduced cost with information from both ends of the chain

Column generation adds all variables with positive reduced cost to the restricted LP, but equation (8)
leads to an inefficient algorithm because it is positive for many irrelevant edge settings. In (8),
the only terms that involve xi+1 are τ(xi, xi+1) and the τ(x′

i, xi+1) term that is part of αi+1(xi+1).
These are data-independent. Therefore, even if there is very strong local evidence against a particular
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setting xi+1, pairs xi, xi+1 may have positive reduced cost if the global transition factor τ(xi, xi+1)
places positive weight on their compatibility.

We can improve upon this by exploring different LP formulations than that of Wainwright and
Jordan. Note that in equation (5) a local score is “billed” to its rightmost edge. Instead, if we split
it halfway (now using phantom edges in both sides of the chain), we would obtain slightly different
message passing rules and the following reduced cost expression:

αi(xi)− αi+1(xi+1) +
1

2
(θi(xi) + θj(xj)) + τ(xi, xi+1). (9)

This contains local information for both xi and xi+1, though it halves the magnitude of it. In table
2 we demonstrate that this yields comparable performance to using the reduced cost of (8), which
still outperforms Viterbi. An even better reduced cost expression can be obtained by duplicating the
marginalization constraints, we have:

max.
∑

i,xi,xi+1
µi(xi, xi+1)

(

τ(xi, xi+1) +
1
2θi(xi) +

1
2θi+1(xi+1)

)

s.t.
∑

xn
µn(xn, ·) = 1 (N+)

∑

x1
µ0(·, x1) = 1 (N−)

∑

xi−1
µi−1(xi−1, xi) =

∑

xi+1
µi(xi, xi+1) (αi(xi))

∑

xi+1
µi(xi, xi+1) =

∑

xi−1
µi−1(xi−1, xi) (βi(xi))

(10)

Following similar logic as in the previous section, setting the dual variables according to (7) and

βi−1(xi−1) = max
xi

βi(xi) + θi(xi) + τ(xi−1, xi) (11)

is a sufficient condition for optimality.

In effect, we solve the LP of equation (10) in two independent procedures, each solving the one-
directional subproblem in (6), and either one of these subroutines is sufficient to construct a primal
optimal solution. This redundancy is important, though, because the resulting reduced cost

(12)2Ri(xi, xi+1) = 2τ(xi, xi+1) + θi(xi) + θi+1(xi+1)

+ (αi(xi)− αi+1(xi+1)) + (βi+1(xi+1)− βi(xi)) .

incorporates global information from both directions in the chain. In table 2 we show that column
generation with (12) is fastest, which is not obvious, given the extra overhead of computing the β
messages. This is the reduced cost that we use in the following discussion and experiments, unless
explicitly stated otherwise.

4 Column Generation Algorithm

We present an algorithm for exact MAP inference that in practice is usually faster than traditional
message passing. Like all column generation algorithms, our technique requires components for
three tasks: choosing the initial set of variables in the restricted LP, solving the restricted LP, and
finding variables with positive reduced cost. When no variable of positive reduced cost exists, the
current solution to the restricted problem is optimal because we have a primal-feasible, dual-feasible
pair.

Pseudocode for our algorithm is provided in Figure 1. In the following description, many concepts
will be explained in terms of nodes, despite our LP being defined over edges. The edge quantities
can be defined in terms of node quantities, such as the α and β messages, and it is more efficient to
store these than the quadratically-many edge quantities.

4.1 Initialization

To initialize the LP, we first define a restricted domain for each node in the graphical model con-
sisting of only xL

i = argmax θi(xi). Other initialization strategies, such as adding the high-scoring
transitions, or the k best xi, are also valid. Next, we include in the initial restricted LP all the indica-
tor variables µi(x

L
i , x

L
i+1) corresponding to these size-one domains. Solving the initial restricted LP

is very efficient, since all nodes have only one valid setting, and no maximization is needed when
passing messages.
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4.2 Warm-Starting the Restricted LP

Updating all messages using the max-product rules of equations (7) and (11) is a valid way to solve
the restricted LP, but it doesn’t leverage the messages that were optimal for previous calls to the
problem. In practice, the restricted domains of every node are not updated at every iteration, and
hence many of the previous messages may still appear in a dual-optimal setting of the current re-
stricted problem. As usual, solving the restricted LP, can be decomposed into independently solving
each of the one-directional LPs, and thus we update α independently of β.

To construct a primal setting from either the α or β messages, we employ the standard technique
of back-tracing the argmaxes used in their update equations. In some regions of the chain, we can
avoid updating messages because we can guarantee that the proposed message updates would yield
the same maximization and thus the same primal setting. Simple rules include, for example, avoiding
updating α to the left of the first updated domain and to avoid updating αi(∗) if |Di−1|= 1, since
maximization over |Di−1| is trivial. Furthermore, to the right of the the last updated domain, if we
compute new messages α′

i(∗) and find that the argmax at the current MAP assignment x∗

i doesn’t
change, we can revert to the previous αi(∗) and terminate message passing. An analogous statement
can be made about the β variables.

When solving the restricted LP, some constraints are trivially satisfied because they only involve
variables that are implicitly set to zero, and hence the corresponding dual variables can be set arbi-
trarily. To prevent extraneous un-generated variables from having a high reduced cost, we choose
duals by guessing values that should be feasible in the unrestricted LP, with a smaller computa-
tional cost than solving the unrestricted LP directly. We employ the same update equation used for
the in-domain messages in (7) and (11), and maximize over the restricted domain of the variable’s
neighbor. In our experiments, over 90% of the restricted domains were of size 1, so this dependence
on the size of the neighbor domain was not a computational bottleneck in practice, and still allowed
the reduced-cost oracle to consider five or less candidate edges in each iteration in more than 86%
of the calls.

4.3 Reduced-Cost Oracle

Exhaustively searching the chain for variables of positive reduced cost by iterating over all settings of
all edges would be as expensive as exact max-product message-passing. However, our oracle search
strategy is efficient because it prunes these away using precomputed bounds on the transitions.

First we decompose equation (12) as follows

2Ri(xi, xi+1) = 2τ(xi, xi+1) + S+
i (xi) + S−

i (xi+1) (13)

where S+
i (xi) = θi(xi)+αi(xi)−βi(xi) and S−

i (xi+1) = θi+1(xi+1)−αi+1(xi+1)+βi+1(xi+1).

If in practice, most settings for each edge have negative reduced cost, we can efficiently find candi-
date settings by first upper-bounding S+

i (xi) + 2τ(xi, xi+1), finding all possible values xi+1 that
could yield a positive reduced cost, and then doing the reverse. Finally, we search over the much
smaller set of candidates for xi and xi+1. This strategy is described in Figure 1.

After the first round of column generation, if Ri(xi, xi+1) hasn’t changed for every xi, xi+1, then
no variables of positive reduced cost can exist because they would have been added in the previous
iteration, and we can skip the oracle. This condition can be checked while passing messages.

Lastly, a final pruning strategy is that if there are settings xi, x
′

i such that

θi(xi)+min
xi−1

τ(xi−1, xi)+min
xi+1

τ(xi, xi+1) > θi(x
′

i)+max
xi−1

τ(xi−1, x
′

i)+max
xi+1

τ(x′

i, xi+1), (14)

then we know with certainty that setting x′

i is suboptimal. This helps prune the oracle’s search space
efficiently because the above maxima and minima are data-independent offline computations. We
can do so by first linearly searching through the labels for a node for the one with highest local score
and then using precomputed bounds on the transition scores to linearly discard states whose upper
bound on the score is smaller than the lower bound of the best state.
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: Algorithm: CG-Infer

begin
for i = 1→ n do

Di = {argmax θi(xi)}
end
while domains haven’t converged do

(α, β)← GetMessages(D, θ)
for i = 1→ n do

D∗

i , D
∗

i+1 ← ReducedCostOracle(i)
Di ← Di ∪D∗

i

Di+1 ← Di+1 ∪D∗

i+1

end

end

end

: Algorithm: ReducedCostOracle(i)

begin
Uτ (·, xj)← maxxi

τ(xi, xj)
Uτ (xi, ·)← maxxj

τ(xi, xj)

Ui ← maxxi
S+

i (xi)

C′

i ← {xj |S
−

i (xj) +Ui + 2Uτ (·, xj) > 0}

U ′

i ← maxxi+i∈C′

i
S−

i (xj)

Ci ← {xi|S
+

i (xi) + U ′

i + 2Uτ (xi, ·) > 0}
D×D′ ← {xi, xj ∈ Ci, C

′

i|R(xi, xj) > 0}
return D,D′

end

Figure 1: Column Generation Algorithm and Pruning Strategy for Reduced Cost Oracle

5 Extensions of the Algorithm

The column generation algorithm is fairly general, and can be easily extended to allow for many
interesting use cases. In section 7 we provide experiments supporting the usefulness of these exten-
sions, and they are described in more detail in appendix A.

First of all, our algorithm generalizes easily to MAP inference in trees by using a similar structure
but a different reduced cost expression that considers messages flowing in both directions across
each edge (appendix A.1). The reduced cost oracle can also be used to compute the duality gap
of an approximate solution. This allows early stopping of our algorithm if the gap is small and
also provides analysis of the sub-optimality of the output of beam search (appendix A.2). Further-
more, margin violation queries when doing structured SVM training with a 0/1 loss can be done
efficiently using a small modification of our algorithm, in which we also add variables of small
negative reduced cost and do 2-best inference within the restricted domains (appendix A.3). Lastly,
regularizing the transition weights more strongly allows one to train models that will decode more
quickly (appendix A.4). Most standard inference algorithms, such as Viterbi, do not have this be-
havior where the inference time is affected by the actual model scores. By coupling inference and
learning, practitioners have more freedom to trade off test-time speed vs. accuracy.

6 Related Work

Column generation has been employed as a way of dramatically speeding up MAP inference prob-
lems in Riedel et al [10], which applies it directly to the LP relaxation for dependency parsing with
grandparent edges.

There has been substantial prior work on improving the speed of max-product inference in chains
by pruning the search process. CarpeDiem [11] relies on an an expression similar to the oriented,
left-to-right reduced cost equation of (8), also with a similar pruning strategy to the one described
in section 4.3. Following up, Kaji et al. [12] presented a staggered decoding strategy that similarly
attempts to bound the best achievable score using uninstantiated domains, but only used local scores
when searching for new candidates. The dual variables obtained in earlier runs were then used to
warm-start the inference in later runs, similarly to what is done in section 4.2. Their techniques
obtained similar speed-ups as ours over Viterbi inference. However, their algorithms do not pro-
vide extensions to inference in trees, a margin-violation oracle, and approximate inference using
a duality gap. Furthermore, Kaji et al. use data-dependent transition scores. This may improve
our performance as well, if the transition scores are more sharply peaked. Similarly, Raphael [13]
also presents a staggered decoding strategy, but does so in a way that applies to many dynamic
programming algorithms.

The strategy of preprocessing data-independent factors to speed up max-product has been previously
explored by McAuley and Caetano [14], who showed that if the transition weights are large, savings
can be obtained by sorting them offline. Our contributions, on the other hand, are more effective
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when the transitions are small. The same authors have also explored strategies to reduce the worst-
case complexity of message-passing by exploiting faster matrix multiplication algorithms [15].

Figure 2: Training-time manipulation of ac-
curacy vs. test throughput for our algorithm

Alternative methods of leveraging the interplay be-
tween fast dynamic programming algorithms and
higher-level LP techniques have been explored else-
where. For example, in dual decomposition [16], in-
ference in joint models is reduced to repeated infer-
ence in independent models. Tree block-coordinate
descent performs approximate inference in loopy
models using exact inference in trees as a subrou-
tine [1]. Column generation is cutting planes in the
dual, and cutting planes have been used successfully
in various machine learning contexts. See, for exam-
ple, Sontag et al [17] and Riedel et al [18].

There is a mapping between dynamic programs and
shortest path problems [19]. Our reduced cost is an
estimate of the desirability of an edge setting, and
thus our algorithm is heuristic search in the space of
edge settings. With dual feasibility, this heuristic is consistent, and thus our algorithm is iteratively
constructing a heuristic such that it can perform A∗ search for the final restricted LP [20].

7 Experiments

We compare the performance of column generation with exact and approximate inference on
Wall Street Journal [21] part-of-speech (POS) tagging and joint POS tagging and named-entity-
recognition (POS/NER). The output variable domain size is 45 for POS and 360 for POS/NER. The
test set contains 5463 sentences. The POS model was trained with a 0/1 loss structured SVM and
the POS/NER model was trained using SampleRank [22].

Table 1 compares the inference times and accuracies of column generation (CG), Viterbi, Viterbi
with the final pruning technique described in section 4.3 (Viterbi+P), CG with duality gap termi-
nation condition 0.15% (CG+DG), and beam search. For POS, CG, is more than twice as fast as
Viterbi, with speed comparable to a beam of size 3. Whereas CG is exact, Beam-3 loses 1.6%
accuracy. Exact inference in the model obtains a tagging accuracy of 95.3%.

For joint POS and NER tagging, the speedups are even more dramatic. We observe a 13x speedup
over Viterbi and are comparable in speed with a beam of size 7, while being exact. As in POS,
CG-DG provides a mild speedup.

Over 90% of tokens in the POS task had a domain of size one, and over 99% had a domain of size
3 or smaller. Column generation always finished in at most three iterations, and 22% of the time it
terminated after one. 86% of the time, the reduced-cost oracle iterated over at most 5 candidate edge
settings, which is a significant reduction from the worst-case behavior of 452. The pruning strategy
in Viterbi+P manages to restrict the number of possible labels for each token to at most 5 for over
65% of the tokens, and prunes the size of each domain by half over 95% of the time.

Table 2.A presents results for a 0/1 loss oracle described in section 5. Baselines are a standard Viterbi
2-best search1 and Viterbi 2-best with the pruning technique of 4.3 (Viterbi+P). CG outperforms
Viterbi 2-best on both POS and POS/NER. Though Viterbi+P presents an effective speedup, we
are still 19x faster on POS/NER. In terms of absolute throughput, POS/NER is faster than POS
because the POS/NER model wasn’t trained with a regularized structured SVM, and thus there are
fewer margin violations. Our 0/1 oracle is quite efficient when determining that there isn’t a margin
violation, but requires extra work when required to actually produce the 2-best setting.

Table 2.B shows column generation with two other reduced-cost formulations on the same POS
tagging task. CG-α uses the reduced-cost from equation (8) while CG-α+θi+1 uses the reduced-
cost from equation (9). The full CG is clearly beneficial, despite requiring computation of β.

1Implemented by replacing all maximizations in the viterbi code with two-best maximizations.
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Algorithm % Exact Sent./sec.

Viterbi 100 3144.6
Viterbi+P 100 4515.3
CG 100 8227.6

CG-DG 98.9 9355.6
Beam-1 57.7 12117.6
Beam-2 92.6 7519.3
Beam-3 98.4 6802.5
Beam-4 99.5 5731.2

Algorithm % Exact Sent./sec.

Viterbi 100 56.9
Viterbi+P 100 498.9
CG 100 779.9

CG-DG 98.4 804
Beam-1 66.6 3717.0
Beam-5 98.5 994.97
Beam-7 99.2 772.8
Beam-10 99.5 575.1

Table 1: Comparing inference time and exactness of Column Generation (CG), Viterbi, Viterbi with
the final pruning technique of section 4.3 (Viterbi+P), and CG with duality gap termination condition
0.15%(CG+DG), and beam search on POS tagging (left) and joint POS/NER (right).

POS POS/NER
Method Sent./sec. Sent./sec.

CG 85.0 299.9
Viterbi 2-best 56.0 .06
Viterbi+P 2-best 119.6 11.7

Reduced Cost POS Sent./sec.

CG 8227.6
CG-α 5125.8
CG-α+θi+1 4532.1

Table 2: (A) the speedups for a 0/1 loss oracle (B) comparing reduced cost formulations

In Figure 2, we explore the ability to manipulate training time regularization to trade off test accu-
racy and test speed, as discussed in section 5. We train a structured SVM with L2 regularization
(coefficient 0.1) the emission weights, and vary the L2 coefficient on the transition weights from 0.1
to 10. A 4x gain in speed can be obtained at the expense of an 8% relative decrease in accuracy.

8 Conclusions and future work

In this paper we presented an efficient family of algorithms based on column generation for MAP
inference in chains and trees. This algorithm exploits the fact that inference can often rule out
many possible values, and we can efficiently expand the set of values on the fly. Depending on the
parameter settings it can be twice as fast as Viterbi in WSJ POS tagging and 13x faster in a joint
POS-NER task.

One avenue of further work is to extend the bounding strategies in this algorithm for inference
in cluster graphs or junction trees, allowing faster inference in higher-order chains or even loopy
graphical models. The connection between inference and learning shown in section 5 also bears
further study, since it would be helpful to have more prescriptive advice for regularization strategies
to achieve certain desired accuracy/time tradeoffs.
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