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ABSTRACT

RETRIEVAL AND EVALUATION TECHNIQUES
FOR PERSONAL INFORMATION

SEPTEMBER 2012

JINYOUNG KIM

B.Sc., SEOUL NATIONAL UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Providing an effective mechanism for personal information retrieval is important

for many applications, and requires different techniques than have been developed for

general web search. This thesis focuses on developing retrieval models and represen-

tations for personal search, and on designing evaluation frameworks that can be used

to demonstrate retrieval effectiveness in a personal environment.

From the retrieval model perspective, personal information can be viewed as a

collection of multiple document types each of which has unique metadata. Based on

this perspective, we propose a retrieval model that exploits document metadata and

multi-type structure. Proposed retrieval models were found to be effective in other

structured document collections, such as movies and job descriptions.

Associative browsing is another search method that can complement keyword

search. To support this type of search, we propose a method for building an asso-

ciation graph representation by combining multiple similarity measures based on a

iii



user’s click patterns. We also present a learning techniques for refining the graph

structure based on user’s clicks.

Evaluating these methods is particularly challenging for personal information due

to privacy issues. This thesis introduces a set of techniques that enables realistic and

repeatable evaluation of techniques for personal information retrieval. In particular,

we describe techniques for simulating test collections and show that game-based user

studies can collect more realistic usage data with relatively small cost.
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CHAPTER 1

INTRODUCTION

According to Jones and Teevan [42], Personal Information Management (PIM)

refers to both the practice and study of the activities a person performs in order

to locate or create, store, organize, maintain, modify, retrieve, use and distribute

information in each of its many forms as needed to meet many goals and to fulfill

life’s many roles and responsibilities. As is clear in this definition, the value of PIM

activities can be found in the context of achieving other goals in lives, and Jones [41]

expressed this more succinctly that PIM is the art of getting things done in our lives

through information.

A central challenge in PIM is the problem of retrieving (or accessing) one’s infor-

mation, and this is the focus of this thesis: designing and evaluating techniques for

personal information retrieval (PIR). Although personal information can take various

forms, we define PIR as the process involved in a person accessing their own infor-

mation stored in digital form. This includes accessing documents in one’s desktop or

mobile devices, as well as personal information in the various types of social media.

This is a significant issue because the amount and variety of information we deal

with in our everyday lives is constantly growing and current search tools are inade-

quate. Moreover, it is known that effective and efficient information access is a critical

component for the productivity of knowledge workers. While web search has changed

how people access information on the web, and personal information is increasingly

spread across various web services, finding information in one’s own digital collection

remains a difficult task for most people.

1



Despite the importance of the task, research in PIR has been relatively stagnant

for several reasons. First, since each person has a different mix of information, created

using a variety of tools, it is hard to design a retrieval approach that generalizes across

all users. Second, evaluating PIR has been considered costly, because it typically

involves long-term user studies where participants are expected to use the software

provided during the period of the experiment. Finally, the data collected during such

user studies cannot be shared with other researchers due to privacy concerns.

This thesis aims to develop and evaluate a set of techniques that enables effective

retrieval of personal information. To avoid the aforementioned problems, we take

several new approaches. We propose general retrieval models that are applicable re-

gardless of the characteristics of a user’s data or behavior—a field-based search model

and an associative browsing model. We also introduce evaluation methods—Pseudo-

desktop and DocTrack—that make it possible for any PIR system to be evaluated

without a long-term user study, and for the outcome of the evaluation to be used by

other researchers. Both the retrieval models and the evaluation methods are exten-

sively verified in a variety of settings.

Since these are general techniques motivated by several characteristics of personal

information, they have applications beyond PIR. For instance, the field-based re-

trieval framework can be used for arbitrary collections with rich structural metadata.

Especially, we find that the proposed retrieval model (the field relevance model)

outperforms strong baselines in several structured document collections. Also, the

evaluation techniques presented here are applicable to other areas such as enterprise

search which also deals with privacy-sensitive data.

In the remainder of this chapter, we first give an overview of the problem domain

and present several key observations. Based on these observations, we then introduce

the approaches taken by this thesis in detail, followed by the research contributions

to be made.

2



1.1 Personal Information Retrieval

In this section, we first define and characterize the problem in detail. We then

describe several recent trends, followed by the discussion of the problem characteristics

on which we build our approaches.

1.1.1 Problem Definition

We first provide a more broad definition of the problem of personal information

retrieval (PIR), and specify where we focus on in this thesis. This is an important

step because there are many different types of personal information, user’s information

needs for personal information, and possible solutions for addressing them.

There exist two major forms of personal information: analog (mostly paper-based)

and digital. Since a greater portion of personal information is moving into digital

form (e.g., the availability for easy scanning solution for personal documents), and

the information in digital form is more amenable to automated retrieval techniques,

we focus on digital information.

In terms of user’s information needs, the nature of personal information indicates

that most of information objects are the ones seen or created by the user. This in

turn means that most of target items for retrieval are the ones seen by the user,

where users can use their memory during the retrieval process. Although accessing

personal information can involve other types of information needs, we focus on this

so-called known-item finding problem, which is known as the most frequent form of

information needs [34] [42] in PIR.

Finally, the problem of PIR can be approached both from human and technological

perspective, since effective and efficient information access is a function of both the

user and the system. Solutions from human perspective involves educating the user

on how to keep the information so that retrieval is made easier (e.g., foldering or

tagging), or how to find things more efficiently using the retrieval facilities of the

3





1.1.2 Problem Characteristics

In order to develop a sensible approach to the problem, here we intend to char-

acterize the problem of PIR in terms of the document collection, user behavior and

research methodology.

From the perspective of the data, we can regard personal information as a col-

lection of multiple document types with type-specific metadata. For instance, emails

have sender and receiver fields, whereas office documents have filename and author

fields. Considering that personal information is now increasingly spread across var-

ious places on the web (e.g., blog, Twitter, Facebook), this characterization is even

more valid.

From the perspective of the task, we primarily focus on the known-item search for

this thesis. The known-item search task implies that people rely on their memory of

target documents during the information-seeking process, and we use this property

extensively in the design of retrieval and evaluation techniques. For instance, the

assumption that the user has a specific target document in mind turns out to become

critical in the design of the simulated evaluation technique we propose.

Another important point is that a PIR system continually interacts with a single

user over a long period, unlike a web search engine which serves the sporadic infor-

mation needs of many individuals. This long-term interaction provides opportunities

for the system to better understand and serve the user, where the challenge lies in

adapting to different behavioral patterns of different users. In this thesis, we suggest

several techniques by which the behavior of system can be personalized based on

interactions with the user.

From the perspective of evaluation, the study of PIR is considered hard due to the

privacy of data being searched. Unlike other areas of information retrieval for which

we can build standard collections that can be shared with many other researchers,

the access of documents and log data for PIR research is typically confined to the
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group of researchers who actually performs the study. Since this has been a major

barrier for the progress of PIR research community as a whole, we suggest several

evaluation methods that address this concern.

1.1.3 Recent Trends

Unlike its analog counterpart, the access of personal information has been chang-

ing significantly over the years due to the change in the hardware and software plat-

forms and applications. Since it is important to check the validity of the proposed

solutions in the context of these changes, we discuss several recent trends and whether

the characteristics introduced above holds true.

First, personal information is increasingly stored and accessed in various social

media in recent years. The fragmented nature of these archives present challenges in

accessing such types of personal information. However, we argue that the approaches

proposed here are applicable to these scenarios, since they increase the diversity of

the collections.

The screenshot in Figure 1.2 from a popular web service Greplin 1 exemplifies a

search in this scenario, where user’s search for ‘social media’ matches with items from

various social media streams. Comparing with the search in the desktop shown in

Figure 1.1, it is clear that the underlying framework is the same, although the type

of information indexed would be different.

Second, Google started a serviced called ‘Search Plus You’2 where personal infor-

mation is blended into a typical Google web search results. This further accelerates

the trend of integrating personal and other sources of information, where way users

can see results collected from both personal and public sources. Even here, the same

1http://www.greplin.com

2http://www.google.com/insidesearch/features/plus/index.html
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Figure 1.2. A search interface over personal social media collections.

Figure 1.3. A search interface which shows the combination of personal and web
collections.

framework is applicable if the web is considered as an additional source from which

the results are collected.

Finally, Apple’s Siri voice agent technology3 allows smartphone users to access

various types of information from personal sources and the web. By providing a more

natural interaction method, Siri can provide information even when users are not able

to type queries and read the results. The more complex queries that can result from

this interaction can be exploited in the retrieval models we develop.

3http://www.apple.com/iphone/features/siri.html
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1.2 Our Approach

In this section, we introduce our approach to the problem. We first describe an

abstract model of information seeking in personal information retrieval that acts as a

foundation on which we build our approach. We then introduce the proposed retrieval

models and evaluation techniques in detail.

1.2.1 Model of Information Seeking

Given our goal of improving information access over personal document collec-

tion, it would be helpful to build an abstract model of the problem from which

specific approaches can be derived. Figure 1.4 shows a model of information seeking

over personal documents. Here, the user has some information need over a target

document, or a set of them. For instance, she might need a email to look up a specific

number.

Since we assume that she has seen the document before, she has a partial memory

of the items, which allows her to formulate queries. There can be several different

types of memory known in literature [84] [28]. For a typical case, if a user recalls

terms from the target document, those terms can be used to formulate keyword

queries. Alternatively, one may remember about documents related to the target

document. For instance, the user can recall another email in the same thread (if the

target document was an email), or a document one was editing at the same time with

the target document.

From retrieval perspective, the user’s information need somehow needs to be trans-

lated into a concrete query to initiate the retrieval process, and it is important for

a system to support diverse kinds of queries that correspond to various information-

seeking scenarios. For this reason, we designed our retrieval framework so that it

can supports both keyword and item-based queries, which are based on the memory
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Table 1.1. Comparison between term-based search and associative browsing

Field-based Search Associative Browsing
User’s Knowledge Target document Related document(s)
User’s Input Type a query Click on a suggestion

nature of the personal information extensively to improve the search capability, we

call it a field-based search.

Associative browsing enables the user to browse through documents by following

the chain of associations, where one item functions as a query to retrieve relevant

items. By providing a way to utilize the user’s memory of associations between doc-

uments, associative browsing can provide an alternative mode of information access.

Table 1.1 compares these two retrieval models, which shows that these methods are

based on different assumptions around user’s knowledge, and requires different types

of input from the user.

The proposed search and browsing models are general techniques of retrieval which

are applicable regardless of document types, unlike some access mechanisms that are

available only to specific document types (e.g., the hierarchy of a file organization, the

tags of blog posts). Also, these two methods are complementary in that they can be

naturally combined in a single system. For instance, users can initiate retrieval using

a keyword search, subsequently relying on associative browsing in case the keyword

search is unsuccessful.

Here, we provide a concrete example on how keyword search and associative brows-

ing can be combined for a known-item finding task. Imagine a user who is trying to

find a webpage she has seen before. Further assume that she cannot come up with a

good keyword for search, yet she remembers the sender of a related email. Using our

approach, as shown in Figure 1.5, the user can first search for a relevant email using

the person’s name as a keyword query, and then browse into the target document

(webpage).
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concerns. Second, the evaluation should take into account the diversity in a user’s

personal information, information needs and behavioral characteristics. Finally, since

the proposed retrieval framework involves the combination of multiple information

seeking methods, the evaluation method should be capable of handling such com-

plexity in interaction methods.

Previous studies of PIR often involved an instrumentation-based user study—

deploying the system in a real environment and having it evaluated by actual users.

This kind of evaluation method has its own benefits, and would be required if external

validity is of the utmost importance. However, it requires considerable resources,

which makes it hard, if not impossible, to perform a large-scale user study. Moreover,

the collections and usage logs from these studies are not open to other researchers

because they include private information.

An alternative evaluation paradigm is the batch evaluation using test collections,

known as Cranfield method and popularized by the TREC 4 conference in the infor-

mation retrieval community. Typically composed of the document collection and a

set of query and relevant documents pairs, a test collection enables a set of retrieval

methods to be evaluated against one another in a repeatable manner based on a set

of metrics. While this kind of batch evaluation is adopted as a standard in most of IR

tasks, the private nature of personal information has prevented such test collections

from being built.

In evaluating our retrieval methods, we propose a set of techniques that addresses

these issues and meet the challenges in PIR evaluation. The main idea is to simulate a

component of existing evaluation techniques in a way that overcomes the limitations

while preserving the validity of evaluation. The target of simulation includes collection

4http://trec.nist.gov
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documents, search tasks and even the user’s interactions with the system. In what

follows, we introduce the techniques in greater detail.

First of all, we propose a technique for gathering collection documents and simu-

lating users’ interactions with the system, thereby requiring no human involvement.

We first employ various techniques to build document collections with similar char-

acteristics to personal information archives. For evaluating term-based search, we

developed a method for automatically generating query and target document pairs

(Pseudo-desktop). For evaluating associative browsing, we propose a method for

generating click behavior for browsing.

We also propose a methodology for game-based user studies where we develop

simulated search tasks, and provide participants with an environment for accom-

plishing these in a competitive environment. We developed a human computation

game (DocTrack) whose goal is to find a target document by combining the search

and browsing facilities provided. Since we use public documents for such experiments,

the data gathered from the game has the additional benefit of being free from privacy

concerns, opening possibilities for the findings to be validated by other researchers.

1.3 Contributions

This thesis has made the following contributions, which resulted in seven publi-

cations (six papers and one poster). In what follows, we listed major contributions

along with corresponding references.

• A novel field-based retrieval method for structured documents called PRM-S

(Probabilistic Retrieval Model for Semi-structured data), which exploits the

implicit mapping between query-terms and document fields. The PRM-S is

shown to outperform existing retrieval methods for structured documents sig-

nificantly in the IMDB movie collection, the Monster résumé collection and the

TREC email collection. [51]
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• The notion of field relevance as the generalization of per-term field weighting in

PRM-S, and the corresponding retrieval method called FRM (Field Relevance

Model). The FRM is shown to outperform PRM-S in the structured document

collections mentioned above. [48]

• A set of techniques called Pseudo-desktop for building simulated test collec-

tions aimed at evaluating personal information retrieval. Specific contributions

include novel methods for generating and validating queries for known-item

search. [46]

• A method for performing game-based user studies for personal information re-

trieval called DocTrack. We built the CS collection by collecting public docu-

ments in UMass Computer Science department and gathering a large quantity

of known-item queries and users interactions in this environment. [47]

• A probabilistic model of the user behavior for the simulated evaluation of

known-item finding. The model is capable of generating the user’s interaction

with the system for both search and browsing, and the aggregated outcome of

the model gives comparable results with user studies. [50] [49]

• A novel type prediction method for the multiple collections of structured doc-

uments called FQL (Field-based collection Query-Likelihood), which uses field-

level evidences in collection scoring. The FQL method is shown to have higher

accuracy than existing methods in both the Pseudo-desktop connections and

the CS collection. [47]

• An adaptive type prediction method for personal information retrieval, which

combines many existing type prediction methods as features to improve perfor-

mance further. The suggested method is shown to have higher accuracy in the

CS collection. [47]
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• An adaptive method for suggesting associations between documents or concepts

(the entities and terms of interest to the user) based on the user’s click feedback.

The suggested method is shown to be more effective in suggesting associations

between items than existing methods using the CS collection. [45]

1.4 Organization

This thesis is organized as follows: in Chapter 2, we overview related work in

the areas of structured document retrieval, personal information management and

desktop search, and others. In Chapter 3, we describe the field-based search model,

focusing on field-based retrieval models and type prediction methods. In Chapter

and 4, the associative browsing model and corresponding learning framework is in-

troduced.

In Chapter 5, we change our focus to the evaluation techniques and describe

simulation-based evaluation methods in detail. In Chapter 6, we describe results

for the term-based search model and associative browsing model using the proposed

evaluation methods. We decided to put the experimental results at the end, since it

relies on the understanding of proposed evaluation methods as well as the retrieval

methods. Finally, we conclude this thesis in Chapter 7, describing future work as well

as summarizing the main points.
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CHAPTER 2

RELATED WORK

In this chapter, we describe related work in many areas, and how our research

relates to and extends this work. In terms of problem domain, this work belongs to

the category of personal information management, especially the retrieval of personal

information. From the technical standpoint, the field-based search model extends

techniques in known-item search, semi-structured document retrieval, and federated

search. The proposed browsing model extends the research in associated browsing,

and the evaluation framework is related to the field of simulated evaluation for infor-

mation retrieval.

2.1 Personal Information Management

As briefly introduced at the beginning of this thesis, the field of personal infor-

mation management (PIM) deals with the general problem of keeping, finding and

managing personal information in general. We discuss several points by which the

PIM research relates to this thesis.

Although the focus of this thesis is in providing access to personal information, the

activity of accessing is intertwined with other activities in user’s practice of PIM. In

particular, Jones and Teevan [42] [68] point out that the user’s keeping or managing

activities can later affect the difficulty or the model of finding information. For

instance, users can save their files in a specific location, or create annotations (e.g.,

tags) so that those items can be found more easily later on. The retrieval techniques
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proposed in this thesis, by providing an effective means of utilizing these user-created

metadata for retrieval, can benefit from such user activities.

It has been recognized [80] that people use multiple modes of interaction to access

their information, based on their level of knowledge and behavioral characteristics.

Recently, the relationship between keyword search and other access methods (e.g.,

browsing through folders) has been investigated [68] [10]. In both studies, performed

based on a traditional metadata-based file search system and a full-text search system,

the authors conclude that people use keyword search capability rather infrequently

(4-15%). Our work acknowledges the fact that keyword search is not always the

preferred mode of information access, and propose the combination of search and

browsing as the overall retrieval framework.

The landscape of personal information management is continuously changing [41].

Personal information is increasingly scattered across many devices, applications and

online services, especially due to the widespread use of mobile devices and ‘apps’.

Moreover, the introduction of new hardwares and softwares, or even new versions of

existing ones, require adaptation by users. This rapid turnover of the practice of PIM

has motivated us to focus on the enabling technology as opposed to focusing on a

particular application.

2.2 Personal Information Retrieval

In this section, we introduce related work specifically focusing on the retrieval

side of personal information. This includes studies on traditional desktop search, as

well as recent works on personal metasearch (personal information beyond the desk-

top). We also discuss several attempts to evaluate retrieval techniques over personal

information.

Desktop search systems such as Stuff I’ve Seen [30] and Phlat [27] showed that

user interaction is a significant issue in the desktop environment, and that the date
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can be the most important ranking feature since most users sorted the results by the

date. Other researchers focused more on improving the quality of ranking and showed

that temporal locality and causality [74] are useful features. Learning feature weights

with training data [21] has also been found to be effective in the desktop environment.

From the evaluation standpoint, all these studies evaluated their approach based

on a large deployment of their software within their own organization. While having

the system used by actual users is certainly valuable, the private nature of collected

data prevented them from being shared, thereby eliminating the possibility of com-

parative evaluation. Also, the procedure of system building and deployment can be

quite time-consuming. Our focus is more on the underlying technology that enables

effective retrieval than system building, and we introduce several evaluation methods

that overcome some of these limitations.

There have been attempts to define a framework for desktop search. Thomas et al.

[83] regarded desktop search as a meta-search problem where the results from many

servers are merged. The work in Chapter 3 employs a similar overall framework for

keyword search, and provides end-to-end evaluation of the retrieval framework. They

also employed an evaluation technique [81] [82] based on the side-by-side comparison

of two search results, finding that it is more effective in capturing the context of

user’s search. We believe our technique of constructing test collections can provide

complementary evidence to theirs, and we found reasonable agreement among two

methods.

The evaluation of desktop search or, in general, personal information retrieval

(PIR), has been considered a challenging problem [42] because real desktop collections

are not available for research due to privacy concerns. The performance evaluation

of major commercial desktop search engines was tried [58] in standard IR evalua-

tion settings, using TREC Robust track data. Chernov et al. [18] [17] proposed a

method for creating a testbed for desktop search by collecting documents and queries
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collaboratively, yet no experimental validation was done. Elsweiler [34] suggested an

evaluation method for PIM based on user studies. The approach described in Chapter

5 is different in that it does not require any direct user involvement. [33]

2.3 Known-item Search

Since the focus of this thesis is on improving access for user’s personal informa-

tion, and it is reasonable to assume that users have some knowledge of the documents

stored in their personal files, the research in known-item search problem has partic-

ular significance to this work. The TREC 2005 Enterprise Track [23] provided a

known-item email retrieval task, where a set of emails and corresponding queries

were given. Among the participants, the BM25F model [22] combined a variety of

document fields and other features such as the year and the thread structure to get

good effectiveness. Another approach [89] combined different independent sources

to improve the performance of known-item search. The PRM-S retrieval model in

Section 3.2.3 outperformed the methods described above in a recent evaluation [46].

A related but different concept is re-finding, which means accessing the informa-

tion previously sought for by the same user. As there are other ways of knowing

an item other than finding it, re-finding can be considered a subproblem of known-

item. For instance, if a user is trying to find a document that one has downloaded

from the web, it is a known-item search, but not re-finding. Teevan et al. [79] [1]

analyzed the re-finding behavior on the web, concluding that 40% of web queries are

re-finding queries. In an analysis of re-finding using a query log by Tylor and Teevan

[85], they found that re-finding queries show different characteristics from the initial

query. In particular, they found that re-finding queries are typically shorter and rank

the re-found URL higher, suggesting that people may have learned something from

the initial search.
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Elsweiler et al. [31] [32] [37] studied search behavior for email re-finding based

on a study of 47 participants. They found several factors that affect the difficulty

of the re-finding task, including the time lapsed since the message was received, the

recipient and user’s filing strategy. Based on the analysis of query and click patterns,

they conclude that many queries are targeted for the same document, especially

if the time between queries is small, and that information about people plays an

important role in email queries. In terms of the search strategy, they also found that

people mostly use a combination of search and browsing for re-finding. One of their

conclusions is:

Orienteering behavior was a common re-finding strategy for our partici-

pants. Most queries were very short and often consisted of partial words

or names. Further, the number of hits returned by the query was not a

good indicator of performance, and there tended to be a large number of

message clicks per query submitted. All of this suggests that the preferred

method of re-finding was to narrow the search space with a short query

and browse for clues that facilitated navigating to the email required.

The design of the proposed retrieval framework supports such user behavior. We

assume that users will type in a short query to narrow the search space, and in case

the item is not found, then will use associative browsing to reach the target document.

2.4 Semi-structured Document Retrieval

For the term-based search model described in Chapter 3, related work can be

mostly found in the investigations of the semi-structured document retrieval task,

which have been tried from both IR and database perspectives. Another related area

is the research on keyword search over relational databases, where the task is the

ranked retrieval of structured data using keyword queries.
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For semi-structured document retrieval, people have adapted traditional retrieval

models to handle documents with multiple fields. Early work treated each field as a

smaller document and simply combined field-level scores using linear combination or

a mixture of probability models [64]. This straightforward combination of field-level

scores was found to have limitations, resulting in efforts such as BM25F [70]. Recently,

an adaptation of the score combination and smoothing method was suggested [91] for

the language modeling approach to IR, based on the search engine Indri [63] which

supports combining evidence from multiple fields.

INEX is a major initiative for the study of XML retrieval [4]. The INEX ad-hoc

track addresses the task of retrieving XML data with explicit document structure,

such as section and title, and has used test data consisting of scientific papers or

Wikipedia articles. A recent paper from INEX [60] suggested an extension of the

classic probabilistic retrieval model where each term score is weighted by tag (element

type) score. A tag score for each term is estimated based on the probability that the

element judged relevant contains the term.

The database community has also studied XML retrieval with keyword queries.

The concept of Lowest Common Ancestor (LCA) [36] has been proposed to answer

keyword queries, where the LCA corresponds to the lowest-level XML element which

contains all query words in its descendant elements. Besides XML retrieval with

keyword queries, there has been work about keyword search in relational databases,

which includes DBXplorer [2], DISCOVER [39]. For these systems, the answers to

the keyword query are the tuple trees joined from multiple tables containing query

words. Another recent work adopted the relevance model for database retrieval [20].

Petkova and Croft [65] showed that a keyword query can be refined into a struc-

tured query by mapping each query term into a set of structural fragments and

transforming these fragments into the XPath query that represents the original in-

formation need most appropriately. Calado et al. [13] describe a method of ranking

21



candidate structured queries that is similar to the PRM-S retrieval model described

in Section 3.2.3, although it was applied and evaluated differently.

Compared to the previous work on structured document retrieval, which focuses

on the improvement in the term weighting, the proposed retrieval framework is dif-

ferent in that we focus on the modeling and the estimation of per-term field weights.

Compared to the previous work on keyword search over XML or relational databases,

we use the document as the fixed unit of retrieval and assume no hierarchical struc-

ture within each document. However, it would be an interesting direction for future

research to extend the proposed retrieval model to documents with hierarchical struc-

ture.

The modeling of field relevance can be considered as an extension of many efforts

to model some aspect of relevance. The relevance-based language model [53] is a well-

known model of topical relevance. Here, a relevance distribution is estimated from

top-k retrieved documents, which is in turn used to enrich the initial representation

of the information need given as a query.

As an extension of this work, Lavrenko et al. [54, 90] introduced the structural rel-

evance model, which estimates a term-based relevance model per field. For retrieval,

they combine field-level scores based on relevance models into a document score using

fixed weights. Since our work focuses on estimating per-field and per-term weights,

their model can be potentially improved based on the results here. However, they

focus on modeling term-level relevance, whereas our work focuses on per-term field

relevance.

2.5 Federated Search

In the context of federated search and distributed IR, researchers have proposed

many methods of scoring collections against a given query. Approaches such as CORI

[14] and KL-Divergence [77] treat collections as large documents and apply document
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scoring techniques for scoring collections. Other methods, such as ReDDE [76], model

the distribution of relevant documents for each collection. A recent survey can be

found in [75].

Recently, Arguello et al. proposed a classification approach [5] [6] where many

sources of evidences can be combined for mapping a user’s query into one or more

collections. Our combination approach for type prediction in Section 3.3 is similar to

this work but we use features and evaluation methods more suitable for our problem

domain.

In the context of personal metasearch, Thomas et al. [83] compared several server

selection methods using documents collected from various sources, concluding that a

selection method based on Kullback-Leibler divergence [77] performed the best. The

work in Chapter 3 extends this work by proposing a type prediction method that

exploits the field structure and a combination method whose performance can be

improved by interaction with the user.

2.6 Associative Browsing

Since the early days of IR, researchers have been interested in the combination of

search and browsing for accessing document collections. Lucarella [59] and Cimino

et al. [19] described a system with a network of concepts and documents which

provides search and browsing capability in a complementary manner. The I3R system

developed by Croft and Thompson [24] also assumes a scenario where documents

returned by a user’s initial query provide a starting point for subsequent browsing.

Another paper by Croft and Turtle [25] demonstrated, in the context of document

retrieval, the effectiveness of using inference networks to model the link structure

between documents and using citation links instead of content-based nearest neighbor

links.
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Allan et al. [3] and Leuski and Allan [56] describes a system that presents the user

with ranked lists and a visualization of inter-document similarities, and found that

retrieval effectiveness substantially improves by doing so. Kaplan et al. [43] described

a navigation scheme that adapts to user behavior. Smucker and Allan[78] found that

similarity browsing can improve retrieval effectiveness when used as a search tool.

Compared to these systems, our proposed approach in Chapter 4 is novel in that it

suggests a feature representation of links between items. The weights of these links are

trained using the click feedback from the user. We also used a simulation technique

to evaluating the role of browsing in the context of known-item finding, including a

model of user’s knowledge, and employ different parameters of the user behavior.

Associative browsing models for personal information were introduced in previ-

ous studies [16] [15] [29]. The work in Chapter 4 improves on previously suggested

models of associative browsing in that we use more general measures of associations

(e.g. textual similarity and co-occurrence), while previous models defined links only

between a limited set of items. From the evaluation perspective, this work is differ-

ent in that we evaluated our system using a game-based user study. Our evaluation

method allowed us to test our system in a controlled environment, and the data we

collected can be used by other researchers without any privacy concerns.

Techniques for finding related documents or concepts have been proposed in many

contexts. Danushka et al. [12] measured the semantic similarity based on the results

from a web search engine. Smucker et al.[78] used the unigram language model of

a given document as a query to find similar documents. The suggested model for

associative browsing is novel and comprehensive, in a sense that it uses click-based

training to learn the associations between information items. Using a different set of

features, our learning framework can be applied to other domains.
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2.7 Simulated Evaluation for Information Retrieval

Simulated evaluation has recently received much attention in many areas of IR,

where it was used to replace or complement more traditional evaluation methods,

such as batch experiments or user studies. Here we discuss several variants of the

simulated evaluation: simulated interaction, game-based evaluation and crowdsourced

evaluation.

While it has been conventional for PIR systems to be evaluated based on user

studies, in the human-computer interaction literature, a highly cited paper written by

Greenberg et al. [35] argues that user studies should be employed with caution. They

added that the choice of evaluation methodology must arise from and be appropriate

for the actual problem or research question under consideration. We believe that

the same principle holds true for the evaluation of PIR. User studies and simulation

techniques each have different pros and cons, and the choice or the combination of

these techniques should depend on the nature of research questions at hand.

With regard to simulated evaluation for IR, Ruthven [71] evaluated the effective-

ness of interactive query expansion using simulation. White et al. [88] used search

simulation model to evaluate term selection methods for implicit feedback. For the

evaluation of known-item search, Azzopardi et al.[7] suggested a query generation

method, which is adapted in the Pseudo-desktop method described in Section 5.3.

Smucker et al.[78] and Lin et al. [57] evaluated the associative browsing model using

a simulated model of the user in biomedical domain.

Human computation games [86] have recently become popular as a method for

obtaining a large amount of human annotations in a way that motivates participants.

In the context of IR research, Ma et al. [61] introduced PageHunt, which is a game

designed to collect web search log data by asking participants to find pages that they

were shown. The game-based evaluation method suggested in Section 5.5 is different

from the PageHunt in that we designed a game in which search and browsing are
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supported at the same time. We also analyzed session logs to gain insights into the

use of the system, whereas previous work mostly used the data at the query level.

26



CHAPTER 3

FIELD-BASED SEARCH MODELS

With the popularization of web search, search has become one of the most widely

used methods for personal information retrieval (PIR) as well. While search is not

always possible or desirable in PIR [10], the widespread use of desktop search and

the search over the user’s mobile device indicate that search would continue to be an

important access method for PIR.

In this chapter, we introduce field-based search models for PIR, which is composed

of a retrieval framework and a set of techniques within the framework. We call them

field-based search models, since we extensively use the field structures of documents

to improve the effectiveness of the proposed techniques.

Although we mostly focus on the retrieval of personal information for this the-

sis, the application of the proposed techniques is not limited to personal informa-

tion. In fact, we evaluate the field-based retrieval models proposed here using various

structured document collections in Section 6.3. Also, the proposed field-based type

prediction method is applicable to arbitrary sets of structured document collections.

In what follows, we first introduce our retrieval framework. We then focus on field-

based retrieval methods, where we introduce two novel retrieval models – the Proba-

bilistic Retrieval Model for Semi-structured Data (PRM-S) and the Field Relevance

Model (FRM). We then shift our focus into type prediction methods, introducing a

field-based and a learning-based type prediction methods.

The following notations will be used throughout this chapter. We assume that

a query Q = (q1, ..., qm) is composed of m words and each collection C contains
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Figure 1.1. One alternative would be presenting the results from each document types

separately. Since the type prediction scores can be used to determine the ranking

among document types in that scenario as well, our framework is not confined to the

presentation of a merged ranking.

While the suggested framework is composed of several stages, an alternative would

be eliminating the distinction between the types, and running the retrieval over the

entire collection at once. Compared to this monolithic approach where documents of

all types are put into a single collection and retrieved without any consideration for

the type, the proposed framework allows the use of specialized ranking features for

each type. This is important for collections that have unique ranking criteria, such as

a thread-based features for email [23]. Also, type prediction scores can provide extra

information for ranking in addition to the document-level scores.

For the rest of this chapter, we describe the retrieval methods and the type pre-

diction methods we propose. In order to combine the retrieval and type prediction

scores, we use the well-known CORI algorithm for merging [14].

C ′

i = (Ci − Cmin)/(Cmax − Cmin) (3.1)

D′ = (D −Dmin)/(Dmax −Dmin) (3.2)

D′′ =
D′ + 0.4 ·D′ · C ′

i

1.4
(3.3)

Here, C ′

i and D′ are normalized collection and document score, computed using

the maximum and minimum of collection scores (Cmax / Cmin) and document scores

(Dmax / Dmin), respectively. Given C ′

i and D′, the final document score D′′ can be

computed by combining these two scores.

3.2 Field-based Retrieval Methods

The first step in our retrieval model is ranking documents from each sub-collection.

Although any ranking criteria appropriate for each collection can be used, instead of
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delving into the collection-specific ranking features, we focus on developing a retrieval

model which can generalize across collections.

As we reviewed in Section 2.4, it has been known that document structure can

be helpful in improving retrieval effectiveness. Since each collection has structure

in the form of metadata fields, here we focus on retrieval models designed for semi-

structured document retrieval. We first review existing methods for structured doc-

ument retrieval, and then propose two retrieval models that address the limitations

of existing methods.

3.2.1 Existing Retrieval Methods for Structured Documents

Here we introduce existing retrieval methods for structured documents, including

Document Query-likelihood, BM25F and the Mixture of Field Language Models.

We then discuss similarities among these models, thereby deriving a general form of

existing retrieval models.

3.2.1.1 Document Query-Likelihood

Document Query-Likelihood (DQL) is a standard retrieval model in the language

modeling approach to information retrieval, where each document is ranked by the

likelihood of generating a given query.

P (Q|D) =
m
∏

i=1

PQL(qi|D) (3.4)

Although the DQL method does not take the structure of documents into account,

we can use DQL for our situation by ignoring the field structure and treating the whole

document as a bag of words.
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3.2.1.2 BM25F

Robertson et al. [70] introduced the BM25F retrieval model as a modification of

the BM25 model where field-level evidence is combined at the raw frequency level.

The BM25F score BM25F (Q,D) is calculated as:

BM25F (Q,D) =
∑

qi∈Q

idf(qi)
Score(qi, D)

k1 + Score(qi, D)
(3.5)

where term score Score(qi, D) is calculated as:

Score(qi, D) =
∑

Fj∈D

wjtf(qi, Fj, D)

(1− bj) + bj
length(Fj ,D)

length(Fj ,C)

(3.6)

Here, idf indicates global inverse document frequency, tf and length denotes per-field

term frequency and length, respectively. Also, a field weight parameter wj is used to

combine field-level frequency into document-level frequency, and another field-level

parameter bj controls the degree of length normalization. Robertson et al. [70] suggest

training wj and bj based on held-out queries.

3.2.1.3 Mixture of Field Language Models

Ogilvie et al. [64] suggested a mixture of field language models by linear interpola-

tion (MFLM) for known-item search in structured document collections. A document

score in the MFLM is calculated by taking the weighted average of field-level query-

likelihood scores as follows:

P (Q|D) =
m
∏

i=1

n
∑

j=1

wjP (qi|Fj, D) (3.7)

MFLM also has per-field weights wj, which are estimated based on maximizing

retrieval performance in training queries, similarly to BM25F.
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3.2.1.4 General Form of Existing Retrieval Models

Although these retrieval models are based on different retrieval paradigms and

assumptions, they are similar in terms of how they use field weighting to combine

field-level evidences. More formally, we can write a general form of existing retrieval

models for structured documents as follows:

Score(D, qi) =
n

∑

j=1

w(Fj, qi)Score(qi, Fj, D) (3.8)

Score(D,Q) =
m
∏

i=1

Trans
(

Score(D, qi)
)

(3.9)

Score(qi, Fj, D) denotes the field-level score of D for query term qi and field Fj.

The score is a field-level term frequency in BM25F and the likelihood of observing qi

in a smoothed field-level language model of D in MFLM.

The field-level score is then combined into a document-level score weighted by

w(Fj, qi), and we can write w(Fj, qi) = w(Fj) for BM25F and MFLM since their field

weights are not dependent on a query term. Finally, the function Trans denotes a

linear transform by which weighted term frequency is transformed into a BM25 score

in BM25F, and Trans is an identity transform in MFLM.

Based on the generalized functional form above, we can see that all the existing

models for structured document retrieval have a field weighting component, where a

linear combination is used to combine field-level evidences. Previous work [70] [64]

has shown the empirical effectiveness of these field weighting techniques, although

they are limited in that the field weighting in these models required fixed per-field

weights. Another limitation is that none of these models provided a way to incorporate

relevance feedback or pseudo-relevance feedback for field weighting. That is, there has

not been a natural way to adjust field weights based on the observation of relevant

documents, or some approximation of them.
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Figure 3.2. An example of search interface of a digital library
(http://openlibrary.org) that exploits metadata fields.

In what follows, we introduce two novel retrieval methods that addresses the lim-

itations above. The first retrieval model (PRM-S) introduces per-term and per-field

weighting which are estimated using classification techniques. The second retrieval

model (FRM) introduces the notion of relevance applied to field weighting, and the

combination-based estimation techniques for field relevance.

3.2.2 Evidence for Per-term Field Weighting

Before we describe the proposed retrieval models, we provide justifications for

per-term field weighting. Figure 3.2 shows a search interface which allows various

types of field-level interactions. Here, users can type in field operators to specify the

field they associate with each query term. Alternatively, users can use an advanced

search interface to specify the same kind of information.
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Table 3.1. Distribution of Query Fields in Email Known-item Search (from Elsweiler
et al. [32])

Field Count Percentage
subject 231 7.49
sender 585 18.97
subject or send (default) 1677 54.38
entire message 412 13.36
to or cc 179 5.8

A recent study of email search behavior [32] investigated the distribution of fields

for query terms. The results, shown in Table 3.1 indicates that people’s search terms

are associated with different fields. Besides the subject or sender, which were the

default fields in the search interface, the users’ specification of fields was spread across

different fields.

Our study of retrieval in personal social media collections [55] shows similar trends.

From known-item queries for personal Twitter and Facebook collections, we obtained

the set of query words manually specified with fields, and we looked at how the field

information is distributed. From Figure 3.3 1, it can be observed that a majority of

query words are associated with the msg/text (46% in Facebook and 65% in Twitter)

or uname (32% in Facebook and 11% Twitter) fields. Words specified with cmtmsg

(15%) or re-text (15%) also share a fair portion of all the fields. Overall, query terms

were associated with various fields.

These data suggest that users tend to associate various fields with query terms.

The problem here is that most users still issue plain keyword queries because typing

structured queries is not only cumbersome, but in many cases impossible because it

requires the knowledge of the underlying data schema. In what follows, we propose

retrieval models that eliminate the need for expressing structural intent by predicting

the user’s query intent and incorporating it into the retrieval model. In effect, the

1Fields that are never specified are omitted in the figures.
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prior probability of field Fj mapped into any query term before observing collection

statistics.

With the mapping probabilities estimated as described above, the probabilistic re-

trieval model for semistructured data (PRM-S) can use these as weights for combining

the scores from each field P (qi|Fj, D) into a document score, as follows:

P (Q|D) =
m
∏

i=1

n
∑

j=1

PM(Fj|qi)P (qi|Fj, D) (3.11)

This model was shown to have better performance than other field-based retrieval

methods, such as the mixture of field language models [64] and BM25F [70], for a

semi-structured document retrieval task using the IMDB [51] and TREC email [46]

collections. We present these experimental results in Section 6.3.

3.2.3.1 Mixture of PRM-S and Document Query Likelihood

An important assumption of the PRM-S is that each query term is chosen from a

specific document field. However, it may not make sense to assume that users choose

every query term with a particular field in mind. In this aspect, the PRM-S may seem

too extreme since it only considers field-level scores and totally disregards document

scores. A simple yet effective solution for this problem is to interpolate PRM-S with

the document query likelihood model (PRM-D) as in Equation 3.12, thereby striking

a balance between these two.

P (Q|D) =
m
∏

i=1

((1− λ)
n

∑

j=1

PM(Fj|qi)P (qi|Fj, D) + λP (qi|D)) (3.12)

where λ is the parameter that controls the interpolation ratio.

3.2.4 Field Relevance Model

Previous retrieval models discussed so far used several sources to estimate field

weights. However, there has not been a natural way to incorporate relevance feedback
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for the estimation. In other words, even when a set of relevant documents were known,

it was not easy to exploit this information for retrieval. Also, while the PRM-S model

employed per-term field weights, the estimation is based on limited sources.

To address the limitations of existing retrieval models as described above, here

we introduce the notion of field relevance and corresponding retrieval model (the

field relevance model). We investigate how field relevance can be estimated either

when relevant documents are known (relevance feedback) or not (pseudo-relevance

feedback). We then prove that the field relevance model with relevance feedback

gives an optimal set of field weights.

3.2.4.1 Field Weighting as Field Relevance

The notion of relevance is central to the area of information retrieval, yet the

multi-faceted nature of relevance led to many definitions and controversies. Although

there has been numerous efforts [52, 53, 69] to model and incorporate the relevance in

a retrieval model, most have focused on modeling relevance in bag-of-word retrieval

models without using the document structure.

In structured document retrieval, however, the fields within each document encode

different aspects of information, and we can also find implicit structure within a user’s

keyword query. Given the structure found in both queries and documents, we can

argue that the degree of topical relevance depends on the matching of the structure

as well as terms.

As an illustration, consider a query ‘james meeting 2011’ issued for an email

collection. Assume that a user formulated this query based on the memory of an

email whose sender is ‘james’, whose subject and body fields include ‘meeting’, and

that has the term ‘2011’ in thedate field. A query term may have matches in the

fields that user did not intend, (e.g., ‘james’ can be found in body field), but the term
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scores from such fields should be considered less important since those do not match

with the user’s structural intent.

Since traditional models of relevance feedback focused on adjusting query-term

weights, they cannot capture this variations in relevance with respect to the match-

ing between structural components of a document and a query. To overcome this

limitation, it is necessary that structural components of a collection be considered

in modeling relevance. We now formally define field relevance and the corresponding

retrieval model in the context of a keyword query.

Field Relevance Given a query Q = (q1, ..., qm), field relevance P (Fj|qi, R) is

the distribution of per-term relevance over document fields.

Field Relevance Model Based on field relevance estimates P (Fj|qi, R), the field

relevance model combines field-level scores P (qi|Fj, D) for each document using field

relevance as weights.

Score(D,Q) =
m
∏

i=1

n
∑

j=1

P̂ (Fj|qi, R)P (qi|Fj, D) (3.13)

From the users’ perspective, field relevance can be regarded as their per-term

query intent over document fields. Alternatively, we can interpret field relevance as

the generalization of field weighting components that are found in existing retrieval

models. It is dependent on both word and document fields, unlike the per-field weights

of BM25F and MFLM.

The field relevance as defined above looks similar to the mapping probability

PM(Fj|qi) in PRM-S. However, while the estimation of the mapping probability (per-

term field weights) in PRM-S is conceptually based on a classification framework, we

interpret field weights as a new aspect of relevance, and we argue that this opens up
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new possibilities for estimation. In Section 3.2.4.3, we also show how the mapping

probability can be incorporated to improve the estimation of field relevance.

3.2.4.2 Field Relevance Estimation by Relevance Feedback

Based on our definition of field relevance, we discuss how relevance feedback can

be incorporated into the existing structured document retrieval framework. Ideally, if

we assume knowledge of relevant documents, we can directly use the language model

of relevant documents to estimate field weights.

P (qi|Fj, R) := P (qi|Fj, DR) (3.14)

In other words, the term distribution of known relevant documents across different

fields indicates the relevance of each field for a given query term. Going back to our

earlier example on the query ‘james meeting 2011’, if we knew in which fields in the

relevant email the query terms are located, we could easily identify relevant fields for

each query term. As this is based on the observation of relevant documents, we call

this the ‘oracle’ field weight estimate in what follows.

Since we use the field relevance as field weights in our retrieval model, this allows

true relevance feedback in field weighting — knowledge of relevant documents can be

naturally incorporated into the estimation. This suggests the possibility to improve

retrieval effectiveness if a user is willing to provide relevance judgments.

In more practical scenarios, where relevance judgments are not available, we need

to find alternative sources by which we can approximate the field-level term distribu-

tion of relevant documents. One way is to use the top-k retrieved documents as the

approximation of relevant documents, as was done in previous work [53]. In this the-

sis, to improve the quality of estimation further, we combine this with other sources

of estimation, as will be discussed in what follows.
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3.2.4.3 Field Relevance Estimation by Combining Sources

In the previous section, we introduced the notion of field relevance as the gen-

eralization of field weights, and described how we can estimate field relevance when

relevant documents are known. In practice, field relevance needs to be estimated

based on the information available without the knowledge of relevant documents.

Given the size of the parameter space, however, it is challenging to estimate the value

per field and query term.

To address this concern, we introduce a learning framework where field relevance

can be estimated based on the combination of several sources. Since each source

gives the distribution of field relevance for each query term, we have only as many

parameters as the number of sources.

Here we introduce our estimation framework more formally. We first define the

field relevance estimate P̂ (Fj|qi, R) as a linear combination of several sources. Here,

Λ = (λ1, ...λp) denotes weights used for the mixture.

P̂ (Fj|qi, R) =

p
∑

k=1

λkPk(Fj|qi) (3.15)

We now present our framework for estimating field relevance based on the com-

bination of several sources. First, we need to find a reasonable set of weights Λ =

(λ1, ...λp) to combine sources into a final estimate of field relevance. If we assume

that we have training queries with relevance judgments, we can use coordinate as-

cent search [62, 9] to find a set of parameters that maximize the target metric in the

training queries. Since we have only 5 parameters, this is computationally tractable.

As for the choice of target metric, we followed previous work [62, 9, 70, 64], which

used metrics of retrieval effectiveness, such as MAP or NDCG.

In what follows, we introduce the sources we employed to estimate field relevance.

As we employ some of field weight estimates from previous work as sources and the

combined estimates are used as field weights within the field relevance model, it is fair
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to say that the field relevance model is a generalization of existing retrieval models

for structured documents.

3.2.4.3.1 Collection Language Model As introduced in Section 3.2.3, PRM-

S estimates per-field and per-term weights based on collection statistics. This is a

reasonable choice assuming that the field-level term distribution of relevant documents

will be similar to that of the collection. It also explains the empirical effectiveness of

PRM-S [51, 46].

In our framework, we incorporated as a source the likelihood of observing a query

term qi in the unigram field language model of the collection.

P (Fj|qi, C) =
P (qi|Fj, C)

∑

Fk∈F
P (qi|Fk, C)

(3.16)

While this unigram language model was shown to be effective in previous evalu-

ation with PRM-S [51, 46], it is limited in that it ignores the dependencies between

query terms. To address this problem, we use a field-level bigram language model

whose probability is dependent on the previous query term as well as the current

query term.

P (Fj|qi, qi−1, C) =
P (qi, qi−1|Fj, C)

∑

Fk∈F
P (qi, qi−1|Fk, C)

(3.17)

3.2.4.3.2 Top-k Retrieved Documents To approximate the field-level term

distribution of relevant documents, we described how a field-level collection language

model can be used as a source of estimation. However, in many cases the field-level

term distribution of relevant documents will diverge significantly from that of the

collection. We somehow need ways to approximate the term distribution of relevant

documents more closely.

To solve this problem, we propose using the top-k retrieved documents for a given

query. Specifically, we combine the field-level language models of documents retrieved
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by some ranking methods to build a new language model for each field, and use it to

approximate per-field and per-term weights:

P (Fj|qi, DTopK) =
P (qi|Fj, DTopK)

∑

Fk∈F
P (qi|Fk, DTopK)

(3.18)

The idea of using the top-k retrieved documents to approximate some aspect of

relevance was introduced in Lavrenko and Croft [53], and our approach is similar in

that we use top-k retrieved documents to approximate some dimension of relevance.

The difference is that we use it to estimate field relevance, whereas their goal was to

estimate term weights.

We use similar techniques to build the field language model of top-k documents

as in previous work [53]. The probability is estimated based on the weighted average

of the top-k retrieved documents, where the weights are the query-likelihood scores

for those documents:

P (qi|Fj, DTopK) =
∑

D∈TopK

P (w|Fj, D)
n
∏

i=1

P (qi|D) (3.19)

Similarly to the case of a collection language model, we use bigram language

models of the top-k documents to estimate field relevance.

P (Fj|qi, qi−1, DTopK) =
P (qi, qi−1|Fj, DTopK)

∑

Fk∈F
P (qi, qi−1|Fk, DTopK)

(3.20)

3.2.4.3.3 Per-Field Weights based on Training Queries Previous field-based

retrieval models [70, 64] introduced ways of estimating per-field weights based on the

retrieval effectiveness in training queries. Although field relevance in this work is

defined to be dependent on each query term as well as field, we can incorporate these

per-field weights as one of the sources to increase the reliability of the estimation.
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3.2.4.4 A Mathematical Justification

In order to justify the formulaion of field relevance model, we provide another

perspective of the field relevance model introduced in the previous section, based on

a vector space interpretation of field weighting. We first explain how field weighting

can be considered as a vector projection, and show that the weight vector and the

score vector should have the same direction in order to maximize the score of a given

document.

We finally prove that the field weighting based on the oracle field relevance es-

timate (true relevance feedback) results in the condition under which the score of a

given relevant document is greater than in any choice of field weight vector.

3.2.4.4.1 Field Weighting as a Projection The retrieval model we described

in the previous section, as well as all the other existing field-based retrieval models,

employs a linear model for field-level score combination. Now we show that field

weighting in general can be considered as a projection under this condition.

Let’s assume a document Dk with n fields that has a field-level score vector ~sk of

n dimensions for a given query term qi ∈ Q. Further assume that a field weight vector

~w of n dimensions is used to combine field-level scores into a document-level score.

Given this notation, we can represent the combination as a dot product as follows:

Score(Dk, qi) = ~sk · ~w (3.21)

If we use θ to denote the angle between ~sk and ~w, we can re-write the dot product

as follows:

Score(Dk, qi) = |~sk||~w|cosθ (3.22)

43



Figure 3.4. A vector space interpretation of field weighting with ~w for two documents
D1 and D2 with field-level score vector ~s1 and ~s2, respectively.

Based on the simple derivation above, we can see that the Score(Dk, qi) depends on

both the magnitude of the score vector |~sk| and the cosθ. For comparing Score(Dk, qi)

across different documents, we can ignore |~w| as it is not dependent on documents.

This leads to the following formula, which shows that the document-level score

for query term qi is rank-equivalent to the magnitude of vector projection of the score

vector ~sk onto the weight vector ~w:

Score(Dk, qi)
rank
= |~sk|cosθ (3.23)

In other words, we can regard the weighted combination of field-level scores as

the projection of the score vector onto the weight vector, and this shows how field

weighting impacts document scoring within linear combination.

To illustrate this point, we provide an example with two documents D1 and D2

with two fields in Figure 3.4, where we represented the weight vector ~w and the score

vector ~s1 and ~s2 of two documents in a unit circle. In this example, we can see that

the direction of the weight vector ~w is set closer to the score vector of document D2,

and the resulting score for D2 is greater than that of D1, because ~s2 has a smaller

angle to ~w (larger cosθ) compared to ~s1.
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3.2.4.4.2 Maximizing Score of a Document We now consider an optimal

weight vector — the one that maximizes the score of a relevant document. Let’s

assume that we have observed a relevant document DR with a score vector ~sR for a

query term qi ∈ Q.

Our goal is to derive a weight vector ~wo that will rank DR as highly as possible.

Following the view of field weighting as a projection, we can see that the relative

score of the document DR is maximized when the angle θR between ~sR and ~w is 0,

which gives cos(θR) = 1:

max( ~sR · ~w) = | ~sR||~w|cos(θR) = | ~sR||~w| (3.24)

This can be achieved when ~w has the same direction as the score vector ~sR of DR,

as seen below:

argmax
~w

Score(DR, qi) =
~sR
| ~sR|

(3.25)

In other words, this choice of weight vector is optimal, since no other choice of

weight vector ~w will give higher relative score for DR than ~wo.

There are several considerations in the notion of optimality above. Firstly, ~wo

may not always give the ranking where the relevant document would be ranked at

the top position. Rather, it scores the relevant document as highly as possible for the

query term qi.Another point is that we only considered field weighting per query term

above. Such weighting is not guaranteed to give the best performance when per-term

scores are combined into a final score.

Finally, note that our discussion so far is based on the context of having a single

relevant document, which includes scenarios such as homepage or known-item finding.

However, it can be easily extended to accommodate the cases with multiple relevant

documents. If we can represent each relevant document as a vector of per-field scores,
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we can take the vector sum of these to get ~sR, from which the optimal field weights

can be derived.

3.2.4.4.3 Relevance Feedback in Field Relevance Model Based on the dis-

cussion above, we now consider the case of true relevance feedback in the field rele-

vance model. Specifically, we show that the field relevance model shown in Section

3.2.4 gives the highest per-term score for a given relevant document DR:

P (Q|D) =
m
∏

i=1

n
∑

j=1

P (Fj|qi, DR)P (qi|Fj, D) (3.26)

Consider the following derivation of the retrieval model in Equation 3.26. We use

a Bayesian transformation of P (Fj|qi, DR), then eliminated the prior P (Fj|DR) by

assuming that it is uniform:

P (Q|D)
rank
=

m
∏

i=1

n
∑

j=1

P (qi|Fj, DR)P (Fj|DR)P (qi|Fj, D)

rank
=

m
∏

i=1

n
∑

j=1

P (qi|Fj, DR)P (qi|Fj, D) (3.27)

Now, if we are to score DR using the retrieval model above, we can see that the

field scores and weights take the same value (that is, field-level query-likelihood) for

this particular document DR:

P (Q|DR) =
m
∏

i=1

n
∑

j=1

P (qi|Fj, DR)P (qi|Fj, DR) (3.28)

The vector space interpretation of field weighting in Section 3.2.4.4.2 proves that

this is the weight vector ~w(F, qi) that gives higher rank to DR than any other choice

of ~w. Therefore, we can argue that the proposed retrieval model is sensible in that
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it gives the highest advantage to the relevant document given the knowledge of the

document.

3.2.4.5 Similarity Metrics for Field Relevance

Finally, we introduce several measures of similarity between two estimates of field

relevance. We define these metrics in terms of a per-term similarity between a given

field relevance estimate and an oracle estimate, since we mostly use these metrics to

evaluate given field relevance estimates against oracle estimates. Per-term similarities

are then averaged to become a query-level similarity.

First, since we defined field relevance as a probability distribution, we can use the

Kullback-Leibler divergence between two per-term estimates of field relevance:

DKL(P, PO) =
n

∑

j=1

PO(Fj|qi)log2
PO(Fj|qi)

P (Fj|qi)
(3.29)

We can also the cosine similarity of an oracle estimate ~wo and the given esti-

mate of field relevance ~w. This measure is motivated from the derivation in Section

3.2.4.4.1:

Cos( ~wo, ~w) =
~wo · ~w

| ~wo||~w|
(3.30)

Finally, if we regard the problem of field relevance estimation as the relevance

ranking of fields for a given query term, we can define a precision measure for

each query term. The value of this per-term precision measure is 1 if the field with

the highest field relevance estimate matches with that of an oracle estimate, and 0

otherwise.

3.3 Field-based Type Prediction Methods

In this section, we introduce our type prediction methods in detail. The type

prediction problem bears some similarity to the vertical or resource selection problem
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in aggregated or federated search (refer to Section 2.5 for a detailed review) in that

the system tries to score the results from each vertical, resource, or collection based

on predicted relevance for a given query. In this sense, all these problems can be

put in a broad category of collection scoring. There are, however, several notable

differences.

First, type-specific sub-collections in the desktop are cooperative in that all the

documents are available to a single system. This means that sampling techniques used

for federated search may not be necessary for desktop search; second, unlike typical

collections used for aggregated search, the sub-collections in the desktop environment

are small and have considerable topical overlap. This makes it challenging to apply

content-based collection scoring techniques (e.g., CORI [14]) directly; third, each sub-

collection in the desktop has unique metadata that has not been exploited in existing

collection scoring methods.

We first describe existing methods for type prediction which are adopted from

recent works on aggregated and federated search [5] [6]. Then we introduce a new

type prediction method that exploits document metadata. Lastly, we explain how

multiple type prediction methods can be combined using several learning methods.

3.3.1 Existing Methods for Type Prediction

Here we introduce existing type prediction methods, which are mostly adapted

from collection selection techniques described in Section 2.5. These methods are used

as baselines for our evaluation, and they are used as a feature for the adaptive type

prediction method we describe in Section 51.

3.3.1.1 Query-likelihood of Collection

Many traditional resource selection methods (e.g. CORI) are computed from

collection term statistics. Among these, we use collection query-likelihood (CQL)[77],

which is a resource selection method based on the language modeling approach. The
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approach here is to collapse all documents in each collection into one giant ‘document’

and use the query-likelihood score for the document as the collection score:

CQL(Q,C) =
∏

q∈Q

(λP (q|C) + (1− λ)P (q|G)) (3.31)

C is the language model of each sub-collection and G is the language model of

the whole collection. The smoothing parameter λ adjusts the interpolation ratio of

P (q|C) and P (q|G). CQL was shown to be the most effective among resource selection

methods in a recent evaluation [83].

3.3.1.2 Query-likelihood of Query Log

Another source of evidence for the type prediction is the aggregated query terms

used for finding documents that belong to each sub-collection. As done in previous

work [5] [6], we use the query-likelihood score of the language model (QQL) built by

queries targeted for sub-collection C as shown below:

QQL(Q,C) =
∏

q∈Q

(λP (q|LC) + (1− λ)P (q|LG)) (3.32)

LC is the language model of the query log corresponding to collection C. LG is

similarly defined using the query log across all collections.

3.3.1.3 Geometric Average

Another class of resource selection methods combine the score of top documents

to evaluate each collection given the user query. Seo et al. [73] proposed using the

geometric mean of the top m documents as the combination method,

GAV G(Q,C) = (
∏

d∈Dtop

P (Q|d))
1

m (3.33)

where Dtop is the set of top m documents from the collection and the score P (Q|d)

is padded with Pmin(Q|d) if fewer than m documents are retrieved.
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3.3.1.4 ReDDE

ReDDE [76] [6] scores a target collection based on the expected number of docu-

ments relevant to the query. Although previous work used a centralized sample index

to derive this expectation, we can estimate this directly from the target collection,

ReDDE(Q,C) =
∑

d∈Dtop

P (Q|d) (3.34)

which is equivalent to using the sum of the top document scores belonging to

each collection. Intuitively, this results in a higher score for the collection with more

documents in higher positions.

3.3.1.5 Query Clarity

So far, most of our methods have been derived from resource selection techniques

developed in the context of distributed IR. Query performance prediction methods

can also be used for type prediction by assigning a higher score for the collection with

higher predicted performance. Among such methods, we employ Query Clarity [26],

which predicts performance using the KL divergence between a query language model

and a collection language model.

Clarity(Q,C) =
∑

w∈V

P (w|LQ)log2
P (w|LQ)

P (w|C)
(3.35)

Here, query language model LQ is estimated from the top m documents from the

collection.

3.3.1.6 Dictionary-based Matching

In some cases, users provide direct clues about which file type they intended to

search, by including terms such as ‘sender’(for email), ‘pdf’(for office document) or

‘www’(for webpage). Although these terms may not occur in a majority of queries,

they can be a strong indication of type membership for a given query. We built a
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dictionary for each sub-collection by using the names of the collection and metadata

fields.

3.3.2 Field-based Collection Query Likelihood

Although some of existing type prediction methods use the collection term statis-

tics, none use the field structure of documents available for personal information

collection. Considering that the retrieval effectiveness of semi-structured document

collections has been improved by exploiting this structure [51], we can expect similar

benefits for the type prediction problem.

Field-based collection query likelihood (FQL) – our new method for type pre-

diction – extends the collection query likelihood model for collection scoring [77] by

combining the query-likelihood score for each field of the collection instead of using

the score for the whole collection. In other words, if we borrow the view of query-term

and field mapping described in Section 3.2.3, we try to infer the mapping between a

user query and each collection by combining mapping probabilities for the fields of

each collection.

More formally, for a collection C that contains documents of n field types (F1, ..., Fn),

we can combine the language model score of each field as follows:

FQL(Q,C) =
∏

q∈Q

combFi∈C(P (q|Fi)) (3.36)

Here, Fi is a smoothed language model of the ith field of the collection and comb

can be any function that can combine n numbers into one. We experimented with

many variations of comb function and found that arithmetic mean gives the best

performance.

3.3.3 Combining Type Prediction Methods

Considering that the type prediction methods introduced so far are derived from

different sources, it is plausible that we can get further performance benefits by com-
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bining individual methods in a linear model where weights are found using learning

methods. In this section, we describe three learning methods with different objective

functions: grid search of parameter values, a multi-class classifier and a rank-learning

method.

3.3.3.1 Iterative Grid-search

Since we have only seven features to be combined, It is feasible to perform a grid

search of parameter values that maximize the performance of a training set of queries.

Specifically, we can find the optimal value for each parameter in turns while fixing

the values of the parameters previously found, and repeating the whole procedure

until we reach convergence. In searching for the optimum value of each parameter,

we employed Golden Section Search [67].

3.3.3.2 Multi-class Classification

Given that we want to predict one of k document types for a given query, this

is typical multi-class classification scenario where each type corresponds to a class.

Among many choices of such methods, we used a one-vs-rest (OVR) support vector

machine classifier (MultiSVM) available in the Liblinear Toolkit2. Since the output

of this classifier is not suitable to be used directly as type scores, we used a simple

linear transform to convert the scores into probabilities.

3.3.3.3 Rank-learning Method

Alternatively, one can cast the type prediction task as a ranking problem where

we try to rank the relevant collections higher than non-relevant collections. This

approach can be especially beneficial for the case where the user is finding multiple

documents with different types, since such a situation is hard to model with typi-

2http://www.csie.ntu.edu.tw/ cjlin/liblinear/

52



cal multi-class classification methods. RankSVM [40] was used as the rank-learning

method.

3.4 Summary

In this chapter, we proposed a field-based search model for personal information

retrieval where type-specific retrieval results are merged into a final rank list based

on type prediction scores. As an example of the type-specific retrieval method, we

introduced novel retrieval methods for structured documents called Probabilistic Re-

trieval Model for Semistructured data (PRM-S) and Field Relevance Model (FRM).

The field relevance model introduces new estimation techniques for per-term field

weighting, using either relevant documents or the combination of several sources.

For the type-prediction method, we introduced a method called Field-based collec-

tion Query Likelihood (FQL), and a discriminative learning framework that combines

existing type prediction methods as features.
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CHAPTER 4

ASSOCIATIVE BROWSING MODEL

Modern computer systems allow us to access personal information in many ways.

Apart from hierarchical file organization, keyword search has become a standard

feature for many platforms. Although search can greatly ease the task of finding

personal information, there are still cases in which the user’s initial search attempt

fails. Users may not recall search terms at all, or the initial search keywords may not

be sufficient to retrieve the target document. To address these limitations, we propose

associative browsing as an alternative retrieval method for personal information, and

introduce a technique for enabling associative browsing of personal information.

Associative browsing, in our definition, denotes the process of browsing through

personal information based on the associations between information items (e.g., doc-

uments). Each item acts as a query to retrieve related items, and this chain of

associations can be followed until the information desired is found. In the literature,

this mode of information access by following a series of small steps is called orienteer-

ing, in contrast to teleporting where the user directly taken to the destination (e.g.,

using keyword search).

Previous work show that browsing has several benefits for personal information

retrieval. Studies in cognitive psychology [28] [84] show that people remember facts

primarily by associations, which explains the intuitive appeal of associative browsing.

Earlier works on PIM has found [68] [10] that people are particularly likely to orienteer

when working with their personal information. More recently, Teevan et al. [80]
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suggest that many people tend to find information by orinteering (e.g., navigating

through folders) instead of teleporting (e.g., using keyword search).

However, associative browsing requires the associations between items through

which users can browse their information. Unlike the web where hyperlinks provide

a ubiquitous means of linking, there is no such mechanism for personal information.

Therefore, in order to enable browsing support for personal information, a central

issue is to create associations between items.

Researchers have tried to build such additional structure on top of personal in-

formation [44] [29] that enables associative browsing. Such techniques are generally

referred to as a ‘semantic desktop’—the organization of personal information across

devices and applications based on concepts and the relationships between them. With

a semantic desktop, instead of navigating through files and folders, users can browse

their personal information based on people’s names, events and the relationships be-

tween them.

Despite this appealing vision, none of the approaches suggested previously have

been widely adopted. According to a recent user study [72], the most conspicuous

problem is that these systems have a complex data model and interface, making them

hard to understand and maintain for the end user. A related issue is that users need

to make manual annotations (e.g. Tom is-a-friend-of Mary) to populate the data

model. Recently, Sauermann et al.[72] found that users of such systems in general

are not willing to make annotations to their database except for simple tagging.

In an effort to keep the benefit of structured data while minimizing the cost for

the user, we propose a simple model of associative browsing for personal information.

It is composed of (information) items, tags and the links between items. Items here

represent information objects with textual contents. These objects can be documents

collected from many sources, or concepts – entities and terms of interest to the user.
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Tags and links are the metadata that enables the grouping or the association of

individual items.

This model eliminates many of the complications that existing approaches suf-

fer from. First, the fundamental unit of managing information is documents and

concepts, which is a more intuitive representation of personal information than the

RDF-based ontologies employed in previous work. Secondly, although the system

internally maintains many types of links between items, users are presented with a

single ranked list of related items for browsing.

This presentation in the form of a ranked list also makes it possible to automat-

ically maintain the associations. By presenting a ranked list of suggestions, we can

collect the user’s click feedback, which is then used to refine suggestions for browsing.

This allows the suggestions to be personalized according to user’s click patterns. For

the rest of this chapter, we first introduce an associative browsing model for personal

information. We then describe a learning framework for creating associations between

items.

4.1 Associative Browsing Model

In this section, we introduce the details of the assocative browsing model. We

first introduce our data model, followed by a usage scenario in known-item finding.

Finally, we describe a system that implements this model.

4.1.1 Data Model

At a high level, our associative browsing model is composed of information items

and the associations between them. Figure 4.1 shows an UML diagram of our data

model. An item is a fundamental unit of our data model, which can be either the

documents collected from many sources (e.g., desktop files, emails, calendar items), or

the concepts (e.g., person names, events, etc.). Items can be tagged, and have a text
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DocumentConcept

TagItem

is-a

has-many

occurs-in

links-to links-to

Figure 4.1. An UML diagram for for suggested associative browsing model.

representation—title, URI, content and metadata—the user can perform a keyword

search for any of them. Although we proposed this model in the domain of personal

information, it is a general model of associative browsing which can be used in many

other domains.

One distinctive part of our model is the concept, which denote entities and terms

of interest to the user. Concepts have an association structure of their own, and are

linked to documents they are extracted from. Depending on how the model is imple-

mented, concepts can be extracted from document metadata, or the system can allow

the user to create concepts. While concepts provide another access mechanism for

documents, they are optional in that using only the associations between documents

is possible. In our evaluation, presented in Section 6.4, we evaluate both scenarios.

Another feature of our data model is a rich link structure between items as seen

in Figure 4.2. The associations between concepts and documents are created based

on the occurrence of a concept within a document (e.g. an email and its sender).

While this provides natural connections between documents and concepts, creating

associations between documents and between concepts is harder, since there is no

single method that gives both high coverage and precision.

Previous research solves this problem by asking the users to create associations

manually, or by extracting the associations automatically between a limited set of
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items. In our work, we address this issue by ranking candidates for browsing based

on the combination of many similarity metrics. The top k items are then presented

to the user as suggestions for browsing, and the system learns to improve suggestions

based on the click feedback from the user. Figure 4.3 shows an user interface for

browsing, and the framework for ranking browsing suggestions are provided in Section

4.2.

4.1.2 Applications for Known-item Finding

There can be many use cases for this associative browsing model. For instance,

such a rich network of association would be suitable for exploratory search [87] in per-

sonal information. Another possible use case is known-item finding, where associative

browsing can provide a back-up strategy for keyword search.

In this thesis, we focus on evaluating the associative browsing model in the known-

item finding scenario, since it is the most common task in personal information access

and the well-defined structure allows us to use the evaluation methods introduced

in Section 5. Figure 4.2 provides an example of how associative browsing can be

combined with keyword search for known-item finding. Imagine a user who is trying

to find a webpage she has seen. Further assume that she cannot come up with a good

keyword for search, yet she remembers the sender of a related email.

Based on proposed retrieval framework, the user can first use keyword search to

find a relevant concept (person), and then browse into the target document (webpage)

through another document (email) associated with both the concept and the target

document. Here, dotted lines represent the associations between documents and

concepts. Directed lines denote how a user can access the target webpage by using

keyword search and associative browsing. Now we describe a system that implements

this associative browsing model. We employ this system for the evaluation described

in Section 6.4.
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4.1.3.2 Concept Creation

Given a collection of documents, the next step is to create concepts (e.g., names,

domain terms, and so on), which constitute an extra layer one can use to browse

documents. In LiFiDeA, concepts are items like documents, as described in Section

4.1.1. However, they are different in that the occurrences of concepts are extracted

from documents, and that concepts are primarily used to access documents.

In addition to automatically extracting concepts from documents, the system

allows the user to create concepts. There are several ways of adding concepts in

LiFiDeA. A user can choose to promote a tag to a concept. The user can also decide

to convert an appropriate document (e.g. Wikipedia article) to a concept. It is

also possible to create a concept out of query words that the user types in to find

documents.

4.1.3.3 User Interface for Browsing and Searching

The web interface shown in Figure 4.3 allows the user to browse the concept and

document space. In the back, you can see a index page showing the list of publications

along with tags. Here, users can perform full-text search by typing in keywords or

faceted search by specifying conditions of filtering, which provides an starting point

of browsing as depicted in Figure 4.2.

The front part of Figure 4.2 shows a page for a concept ‘Search Engine’. Here,

the documents mentioning the concept are listed as related documents, and related

concepts are ranked by combining scores from each link types as features. When a

user clicks on this ranked list of concepts, the system collects the user’s clicks on

relevant concepts and uses them as training data for adjusting feature weights.
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Figure 4.3. LiFiDeA user interface. Back: Index page showing the list of publica-
tions along with tags. Front: The page of a concept ‘Search Engine’ showing related
documents and concepts.
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4.2 Ranking Suggestions for Browsing

A major challenge in implementing associative browsing is creating associations

between items, which provide pathways for the user’s navigation and therefore are

critical for effective browsing. This is a particularly big obstacle in the domain of per-

sonal information where no ubiquitous mechanism exists for connecting information

items, such as the hyperlink on the web.

In the data model we proposed, we can easily associate concepts and documents

from which these concepts are extracted. However, creating associations between

documents and between concepts is harder, since there is no single method that gives

both high coverage and precision. This is where previous work turned to either manual

annotations [44] [72] or a limited set of associations [16] [15] [29].

In this work, we propose a solution where the system’s presentation of associations

in the form of a ranked list is refined based on the user’s feedback. In other words,

we cast it as a similarity search problem and combine the values of many similarity

metrics into a single score, by which the top k items are chosen as suggestions for

browsing. In other words, our associative browsing model presents the user with a

ranked list of related concepts or documents, generated by combining many measures

of association with appropriate weights.

Another important task is finding appropriate weights for each feature, as we

suggest the weighted combination of similarity measures for the ranking. We address

this issue by using user’s feedback. Given the space of concepts and documents, users

can browse their personal information by navigating into related items. At the same

time, users provide a stream of click feedback that is used to refine suggestions by

the system.

In this section, we explain the features we used for representing an association be-

tween two items, followed by the methods we employed to learn feature weights. Since
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many features are similarity measures, we will use the term similarity interchangeably

with association.

4.2.1 Features

The following subsections describe the features we used to rank suggestions for

browsing. Note that some of features are applicable only for the ranking of concepts

or documents. If that is the case, then the text in brackets after the name of the

feature will reflect that.

4.2.1.1 Term Vector Similarity

We can create a term vector for each item based on the text in the title or content

fields. Since many concepts do not have any text in their content fields, we use the

documents in which the concepts occur. The term vector similarity score of two items

is just the cosine similarity of the corresponding term vectors.

4.2.1.2 Tag Overlap

Since concepts and documents have tags associated with them, we can consider

two items with common tags to be similar. Given two vectors of tags, we compute

the tag overlap score using the cosine similarity.

TagSim(v1, v2) =
overlap(v1, v2)

√

size(v1) ∗
√

size(v2)
(4.1)

4.2.1.3 Temporal similarity

Intuitively, two items are deemed to be close to one another if the system indexes

them within a short period of time, or if the user creates them within a short period

of time. Therefore, the closer the creation of two items is in time, the higher their

temporal similarity score. We got the feature value by taking the reciprocal of the

difference in creation time (in seconds).
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4.2.1.4 String Similarity (concept)

We compute the string-level similarity by dividing the Levenshtein distance be-

tween the titles of two concepts by the square root of the product of the title lengths

as follows:

StringSim(s1, s2) =
Levenshtein(s1, s2)

√

size(s1) ∗
√

size(s2)
(4.2)

4.2.1.5 Co-occurrence (concept)

This feature counts how many times each concept pair occurs together in the

collection’s documents. It captures the semantic distance between two concepts.

This metric is available only for the calculation of concept similarity.

4.2.1.6 Occurrence (concept)

This feature counts the number of times a concept has occurred in the document

collection in log scale. Although all the other features measure some kind of similarity,

this metric is intended to capture the popularity of a concept, since such concepts are

likely to be clicked by a user.

4.2.1.7 Topical Similarity (document)

This feature relies on the topic model Latent Dirichlet Allocation (LDA) [11].

LDA is a hierarchical Bayesian model, which allows us to model a text document as a

mixture of topics. To measure the similarity between two documents, we calculate the

cosine similarity between the distribution of topics associated with each document.

This is similar to computing the similarity of term vectors, except that each document

is mapped to a vector of latent topics instead of terms.

4.2.1.8 Path / Type Similarity (document)

Since each document has a URI, we can compute a similarity score between two

documents based on the path. Specifically, we calculate the similarity between two

path strings by counting the word-level overlaps from the beginning of the path,
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weight at a time to find the value that maximizes some metric of effectiveness. We

then optimize the next parameter, fixing the values of the others, and repeat the

whole procedure until we reach the convergence. As the target metric, we use the

same metric (Mean Reciprocal Rank) as we use to evaluate the performance. To

search for the optimum value for each parameter, we employ Golden Section Search2.

4.2.2.2 Rank-learning Method

We also used RankSVM [40], which is a more sophisticated method designed for

the rank-learning task. While we employed RankSVM because it accepts pairwise

preferences between items as training data, any such learning method can be used

here.

RankSVM is equivalent to SVM for classification except that the input data takes

the form of pairwise preferences and the difference in feature values of two documents.

In other words, instead of learning to classify between two sets of classes, the algorithm

learns how to correctly predict the preference between two documents given as a set

of feature differences.

4.2.2.3 Comparison of Learning Methods

The two learning methods used here have different characteristics. As for the

objective function, grid search simply finds the set of parameters that maximizes the

target metric, whereas the goal of RankSVM is to predict the pairwise preference

relation with highest accuracy. There is another aspect in which the two methods

differ. While grid search uses each click as a relevance judgment, RankSVM interprets

each click as a pairwise preference. This difference will become more clear in the

subsequent sections. We investigate the performance of the two learning methods in

Section 6.4.3.

2http://economics.uwo.ca/faculty/klein/personal/numopt.pdf
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4.3 Summary

In this chapter, we proposed an associative browsing model for personal informa-

tion retrieval. We describe a data model and a prototype system that implements

this model. We also show how the proposed model can be combined with keyword

search for known-item finding task.

Our associative browsing model is composed of items (concepts and documents)

and the links between them. Instead of displaying links of many types as they are,

we generate a single ranked list of related items by combining the scores of many link

types, which is then presented to the user. In calculating appropriate combination

weights, we employ a learning framework which adjusts weights using click feedback

from the user.

The evaluation for the proposed browsing model is described in the following

chapters. In Section 5.4 and 5.5, we introduce evaluation methodology based on

simulation and user study, respectively. In Section 6.4, we present evaluation results

focusing on its role in known-item finding and the quality of suggestions for browsing.
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CHAPTER 5

SIMULATION-BASED EVALUATION METHOD

So far in this thesis, we have focused on developing retrieval techniques for personal

information retrieval (PIR). However, an equally important challenge is evaluating

the retrieval techniques, since an effective evaluation would be a touchstone for further

improvements. In fact, it has been argued that the research for PIR has been stagnant

due to the challenges in evaluation [18] [42] [34].

Previously, most systems and techniques for PIR were evaluated by an instrumentation-

based user study—deploying the system in a real environment and having it used by

actual users. Although this kind of evaluation has its own benefits, it has several lim-

itations. First, building a production-quality system requires considerable resources,

and conducting a long-term user study is beyond time constraints of many research

projects. Moreover, due to privacy concerns, the collections and usage logs from

these studies are not open to other researchers. We will use the term ‘naturalistic

user study’ to denote this instrumentation-based evaluation method.

As a result, although there were a number of previous attempts to build and

evaluate PIR systems, there were not much in common among these efforts, and

comparative evaluation among different methods was out of the question. To compare

the statistics of documents gathered with the desktop collections used in previous

research, we collected the data from publications or by contacting authors. Table 5.1

shows that desktop collections used in the past vary greatly in many aspects, such as

the number of files and the composition of the collection in terms of file types.
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Table 5.1. Statistics of desktop collections from previous research.

Previous Work #Desktops #Files Query Length Document Types
Dumais et al.[27] 225 36182 1.6 e-mails: 80% / documents: 10% / others: 10%
Chernov et al.[17] 14 3433 1.7 e-mails : 82.7% / documents : 17.3% / others: 0%
Cohen et al.[21] 19 N/A N/A e-mails: 0% / documents: 41.2% / others: 58.8%

Since the limitations of a naturalistic user study stem from employing actual users

and their personal information, one way to address these issues is by using simulation

techniques. Simulation in this context refers to replacing a component of evaluation

with simulated equivalents, and we present simulation techniques for each component

of PIR evaluation. Combining these techniques, we can automatically generate test

collections for evaluating PIR methods. We also propose a user study method based

on simulated tasks as opposed to naturally arising information needs.

Simulation-based evaluation is valuable for the evaluation of personal information

retrieval for several reasons: First, since simulated evaluation can be done with con-

siderably less time and efforts, we can get preliminary evaluation results for retrieval

models before we perform an expensive user study. Furthermore, we can experiment

with a variety of assumptions on user, task and the system by adjusting the parame-

ters of simulation. This is an important aspect of evaluating a PIR method, because

a PIR method should work for users with with a diversity of personal information

and information needs.

However, given the nature of PIR, which aims at satisfying a user’s information

needs, it would be impossible for simulation techniques to completely replace studies

with actual user involvement. In this thesis, instead of trying to replace user studies

altogether, we propose using simulation as a component of a comprehensive evaluation

framework. At the end of this chapter, we introduce an evaluation framework for PIR,

where simulated evaluation methods are combined with realistic user studies based

on different stages of a research project.

In what follows, we first describe major components and paradigms for PIR evalu-

ation. We then describe our method for building simulated queries for the evaluation
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which would not be feasible at early stages of research. Finally, the resulting data

from such naturalistic study can’t be shared with other researchers for privacy issues.

Therefore, in our evaluation framework, we propose replacing each components of

evaluation with simulated components, as shown in the left panel of Figure 5.1. The

components include the collection of personal information, the retrieval task to be

done within the system, and the user’s interaction with the system.

By replacing actual collections and tasks with simulated ones, we can perform

a user study where participants are asked to perform a set of tasks in a controlled

environment. The DocTrack game presented in Section 5.5 is designed for conducting

controlled user study based on known-item finding tasks. By simulating user inter-

actions, we can eliminate human intervention from the evaluation altogether, where

we use algorithmically-generated user interactions instead of the data captured from

study participants. The proposed techniques for generating queries and user interac-

tions enable such evaluation for known-item finding tasks as well.

In what follows, we introduce a set of techniques where we build a simulation of

collection, task, and interaction in the context of the known-item finding task. The

idea is to collect documents with similar characteristics to personal information, and

then algorithmically generate user interactions, including queries and clicks on search

results. User interactions generated can optionally be verified for their equivalence to

existing user interaction data based on several techniques presented here.

5.2 Gathering Collection Documents

As a first step toward the simulated evaluation of PIR, we need a collection of

documents that has the characteristics of personal information. The criteria that we

used for the documents are that 1) the documents should be related to a particular

person, 2) there should be of a variety of document types, 3) the different document

types should have metadata or fields, 4) the collection should be of reasonable size,
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although there is no hard limit on size since real-world desktops vary considerably.

The privacy of the target individual was another concern. In what follows, we describe

two different ways of building a simulated collection of personal information.

5.2.1 Building Pseudo-desktop Collections

Given these constraints, the first method we employed is to re-use an existing

collection for expert-finding task (TREC Enterprise collection [23]). Since the track

had an expert-finding task, the list of people in W3C and their domains of expertise

were available. We basically use the documents and the list of expertise related to

these people to create pseudo-personal document collections.

Specifically, we first filtered the mailing list and webpage from the W3C collection

to get documents that refer to each of target individuals. We then used a web search

engine with the name, organization and specialization of each target individual as a

query to find documents related to that person, repeating the procedure until gathered

documents match the statistics of previously used desktop search collections. More

details will be provided in Section 6.1.1.

In addition to satisfying the conditions above, this method provides a control over

the types of collected documents since most search engines have the option to limit

the search result by file type. Another advantage is that we can index rich metadata

provided by a web search engine together with the documents. For the web search

engine we used (Yahoo!), document title, URL, and summary were available.

5.2.2 Building the CS Collection

The procedure we described above provides a reasonable simulation of personal in-

formation, and is subsequently used for simulated interaction experiments we present

in Section 6.3.2. However, in designing the controlled user study described in Section

5.5, we found that it would be more desirable to conduct the study with documents

that participants are familiar with.
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Since the study participants were recruited from the academic department the re-

searcher belonged to, we collected public documents associated with the department,

which would be familiar while raising no privacy concerns. Most of documents were

found from the crawl of the department homepage, and we collected some emails from

the department public mailing list. We called the resulting documents the computer

science (CS) collection. More details will be provided in Section 6.1.2.

5.3 Generating Simulated Queries

Given the collection of documents, the next step is to create queries and cor-

responding relevance judgments. This is usually the most time-consuming part of

building an IR test collection, because many documents need to be judged for rele-

vance against a given query.

However, in this thesis, we present a set of techniques for generating simulated

queries and relevant judgments automatically for known-item finding tasks. In this

task, there exists a target item which a user wants to find using the retrieval sys-

tem. The user’s query is based on whatever the user remembers from the document.

The proposed technique models this query generation process by choosing a target

document and algorithmically selecting terms that would be used as a query.

In what follows, we present two query generation methods. The first method,

introduced in previous work [7], became a foundation of the subsequent methods we

proposed. The second method exploits the structured nature of personal information

collection for term selection.

5.3.1 Document-Based Query Generation

Given a situation where a user is trying to find a document that she has seen (or

created) previously, she may try to come up with whatever terms she can remember

from the document. Based on this observation, Azzopardi et al. [7] suggested a set
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of methods for generating a known-item query by algorithmically selecting a set of

terms from the target document, as illustrated below.

1. Initialize an empty query q = ()

2. Select document di to be the known-item with probability Pdoc(di)

3. Select the query length s with probability Plength(s)

4. Repeat s times: (k = [1..s])

4-1. Select the term tk from document language model of di Pterm(tk|di)

4-2. Add tk to the query q

5. Record di and q to define a known-item/query pair

They suggested many parameterizations of Pdoc and Pterm, finding that inlink-

based document selection improves the validity of the queries in general and that

each collection requires different term-selection strategy.

5.3.2 Field-Based Query Generation

Previously, Azzopardi et al. [7] showed that the generated queries can be used for

retrieval experiments in a web environment. However, a typical personal information

collection has different characteristics Specially, as we describe in Section 3.2.2, we

assume that the users’ querying behavior would be different for personal information

retrieval because each document is composed of multiple fields.

Therefore, we modified their query generation method for PIR by incorporating

the selection of fields in the generation process, which results in the following algo-

rithm:

1. Initialize an empty query q = ()

2. Select document di to be the known-item with probability Pdoc(di)
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3. Select the query length s with probability Plength(s)

4. Repeat s times: (k = [1..s])

4-1. Select the field fj ∈ di with probability Pfield(fj)

4-2. Select the term tk from field language model of fj Pterm(tk|fj)

4-3. Add tk to the query q

5. Record di and q to define a known-item/query pair

The modification here is step 4., where we choose the field from which the query

term is selected. Our hypothesis is that users may (implicitly) choose fields when they

choose query terms, which has an intuitive appeal given that some document fields

(e.g., To and From in email) are very important in characterizing the document. In

Section 5.3.3, we verify this hypothesis by showing that field-based query generation

method creates queries that are more similar to actual user-generated queries than

the document-based generation method.

Note here that we only use terms in the target document, which may be an unreal-

istic model. However, the issues with the validity of the generated queries are reduced

when they are used solely for comparative evaluation of retrieval methods, since all

methods use the same set of queries. It would be possible to include terms outside

the document in many ways, for instance by interpolating Pterm with a collection

language model. We leave the investigation of such methods to future work.

Although there can be many variations in choosing Pdoc and Pfield, we use a uni-

form distribution that assigns the same probability for every available document and

field, respectively. For Plength, we use the statistics of previously used desktop collec-

tions. For Pterm, we use uniform selection, TF-based selection, IDF-based selection

and TF*IDF-based selection, as suggested in Azzopardi et al. [7]
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5.3.3 Verifying Generated Queries

In general, any simulation method would be meaningful only if it can closely reflect

the phenomenon it tries to model. For the retrieval experiments using the generated

queries to be meaningful, we need to show that they are equivalent in some sense to

hand-built queries.

To do this, past work [7] introduced the notions of predictive and replicative valid-

ity, and experimented with replicative validity. Predictive validity means whether the

data (e.g., query terms) produced by the model is similar to real queries, while replica-

tive validity indicates the similarity in terms of the output (e.g., retrieval scores).

In this thesis, we experiment with both predictive and replicative validity as they

address different aspects of the query generation technique. Predictive validity is ver-

ified by comparing query terms and therefore is independent of the retrieval method.

In contrast, replicative validity compares the distribution of scores returned by the

system and is accordingly dependent on the choice of retrieval method.

Another point is that while the verification of predictive validity does not involve

randomness once Pterm is given, the same does not hold true for replicative validity.

This is because the query generation procedure in general involves random selection

of query terms, which in turn changes the distribution of scores. In sum, these

two measures are complementary in that predictive validity is more stable, while

replicative validity is more strongly related to our eventual goal (retrieval results).

5.3.3.1 Predictive Validity

In verifying predictive validity, we need to evaluate how close the generated queries

are to hand-built queries. To accomplish this, since query generation involves the

choice of term distribution Pterm, we suggest using the generation likelihood Pterm(Q)

of the manual query Q. This can be computed with the term distribution Pterm from

the given query generation method, as follows:

76



Pterm(Q) =
∏

qi∈Q

Pterm(qi) (5.1)

Getting Pterm for document-based query generation method is straightforward

since we can just use the simple maximum-likelihood estimates for each word. For

the field-based query generation method, since every field has different Pterm, we

need to take the linear interpolation of Pterm for all fields. Since we use a uniform

probability for field selection, Pterm for each field can be combined with equal weights.

5.3.3.2 Replicative Validity

Verifying replicative validity involves comparing some outcome of the simulation

method and the target of the simulation. In our case, the goal of our simulation is

to generate known-item query and relevant document pairs, and together they can

generate a score for a particular retrieval system. Therefore, a natural comparison is

between the distribution of scores from generated queries and hand-built queries.

In previous work, Azzopardi et al. [7] measured replicative validity by the two-

sided Kolmogorov-Smirnov test (KS-test) using the score samples of real and gener-

ated queries as input. The KS-test is an independent two-sample test which tests

the null hypothesis that the two samples may come from the same distribution and

the result is sensitive to both the location and the shape of the samples. Since the

KS-test quantifies the similarity between the empirical distribution functions of two

samples, we can conclude that two distributions are equivalent if the resulting p-value

is greater than a certain threshold.

5.4 Generating Simulated User Interactions

So far we have looked at methods for generating known-item finding queries. While

the query generation method enables the evaluation of keyword search methods, it

does not generalize into other modes of information access, including the associative
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Figure 5.3. A state transition diagram for suggested probabilistic user model.

information seeking, and the arrows denote user actions that lead to the transition

between states.

As a starting point, we expect the user to perform a keyword search using the

terms he remembers from the document. If the initial search is successful, he can

finish the session. Otherwise, he can either reformulate the query or click on one of

the top documents to browse into related items. This process continues until he finds

the target document or he reaches the limit of his patience.

We divided the model into three components — keyword search, associative brows-

ing, and the transitions between states. The keyword search component models how

the user would choose terms for search, and the associative browsing component is

responsible for modeling the user’s clicks on the ranked list. The state transition part

is concerned with the decision made by the user on whether to use search or browsing,

or whether to continue the current session or terminate. In what follows, we explain

each component in detail.
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5.4.1 Keyword Search Model

We previously introduced techniques for generating known-item queries that can

be used for PIR experimentss. Since we are dealing with the known-item finding task

in a personal documents collection, we used the query generation model suggested in

[46] to get queries targeted for finding a document.

As a keyword search model, we employ the field-based query generation method

introduced in Section 5.3.2. More specifically, given a target document and pre-

specified length of query, we choose each query-term from a term distribution Pterm

estimated from the document until we reach the limit in pre-specified length.

5.4.2 Associative Browsing Model

In the scenario of known-item finding we assume in this thesis, associative browsing

is used as an alternative to keyword search. When a keyword query returns only

marginally relevant results, a user will click on one of top retrieved documents to

browse related documents. By following this chain of associations, one can locate the

target document.

A central modeling target for browsing behavior is the user’s clicks on retrieved

results, where we have several choices in modeling this behavior. The first choice in

modeling browsing is the level of knowledge the user has about the collection and

target documents. A more knowledgable user will make a better choice in deciding

which document to click on. In this work, we employ three levels of user’s knowledge

— random, informed and oracle, which correspond to the status of no knowledge,

partial knowledge and complete knowledge, respectively.

To implement the level of knowledge in user clicks on the ranked list, we need

to evaluate the candidate documents in terms of their value in retrieving the target

document. In the known-item finding task, the target document is known and each

click to a candidate document leads to a ranked list which may contain the target
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document at some position. Therefore, we can use a retrieval effectiveness measure

(MRR) for each candidate document to evaluate its value in locating the target docu-

ment. And this estimation of candidates’ value provides a ground for modeling user’s

knowledge.

Specifically, while the random user may click on a random position of a ranked

list, the informed user will choose documents from the distribution of candidate

documents whose probability corresponds to the estimated value of each candidate

document. Finally, the oracle user will always click on the document with highest

value. The behavior of the oracle user is greedy in that the choice is based on what

seems the best each moment, and we show in Section 6.4.2.2 that this greedy strategy

does not always lead to the highest success.

Another interesting parameter in user modeling is the variations in browsing be-

havior — how many documents are visited at each time the user sees a ranked list,

and in what order. Although there are many possibilities in modeling user’s browsing

behavior, we employed two browsing strategies introduced in Smucker et al. [78] —

depth-first and breadth-first.

Figure 5.4 illustrates three examples of browsing strategies, where each node rep-

resents a document, and the number in each dot represents the order in which doc-

uments are visited. Since each document corresponds to the ranked list of related

documents, each arc in the figure corresponds to a user’s click. You can see how the

fan-out and the browsing order corresponds to the browsing styles of different users.

In sum, two parameters we use in modeling users’ browsing behavior are the fan-

out (how many documents the user clicks on a ranked list), and the browsing strategy

employed (breadth-first search and depth-first search). Here, higher fan-out means

more exploration than exploitation (more clicks per ranked list), while BFS and DFS

represents exploration-first strategy and exploitation-first strategy, respectively.
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Figure 5.4. An illustration of two browsing strategies: breadth-first search (BFS)
and depth-first search (DFS), both with fan-out of 2. Numbers represent the order
of documents in which they are visited.

5.4.3 State Transition Model

The rest of the simulated user model is concerned with the decision made by a

user on whether to use search or browsing, or whether to continue the current session

or terminate. There can be many factors that can affect the user’s decision, including

whether they can come up with effective search terms, the perceived quality of results

from search or browsing, and so on.

Since our main goal in this work is to evaluate the role of browsing as a complement

for search, we used a simplifying assumption that users would choose to browse if

the initial search is only marginally successful. Here, the technique for measuring

the effectiveness of a ranked list using pre-specified target document can be used to

model the transition from one method to the other. Although there can be many

other considerations in modeling this component, we leave them for future work.

5.5 Collecting User Interactions using a Game

Evaluation based on simulated interactions as introduced above can be valuable in

studying the characteristics of different retrieval methods. However, such a simulated
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user interaction cannot be a substitute for a human data, because the validation

techniques concerns only a specific aspect of data, and even such validation requires

human log data. As an alternative way of evaluating personal information retrieval

(PIR) with minimal human involvement, we suggest a game-based evaluation method

in which participants are asked to find a set of target items in a competitive setting.

This game-based user study has several benefits compared to a traditional user

study. First, it induce higher motivation among participants thanks to a more inter-

esting task and the competitive nature of the game. Secondly, a tight experimental

control is possible since participants are asked to complete a set of given tasks under

constraints provided by the game designer. Reusability of data is another benefit,

because public documents are used and most participants are willing to make public

their activity logs. Last but not least, developing and running a game-based user

study can be done within a relatively small amount of time and effort.

One can see that a game-based user study is not without issues, which stems from

its artificial nature. The situation we created within the game is not the same as actual

search tasks, and the competitive environment may lead to unrealistic behaviors.

Lastly, it does not use personal information or actual search task. However, we

believe that these can be minimized by sensible design and execution of the study,

which we will illustrate using our studies as examples.

There has been several attempts to introduce the game-like user interface of some

kind for the evaluation of a IR system, as reviewed in Section 2.7. By adapting the

PageHunt game [61] to our problem domain, we developed the DocTrack game [47]

for evaluating PIR methods in the context of known-item finding, as shown in Figure

5.5. We made several modifications to the original PageHunt game:

First, since people generally have good knowledge of their own desktops, we col-

lected documents that the participants are familiar with, and let each of them browse

the collection for some time before starting the game. Second, to simulate a typical
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Target Item

Randomly pick one 

target document

Generate a ranked list 

for search & browsing

Randomly choose two 

candidate documents

UserSystem Interface

Skim though documents

(15 seconds each)

Use search & browsing 

to find the document

Figure 5.6. The scenario of DocTrack search and browsing game.

an email and a webpage sequentially and then asked to find one of them, he or she

might get confused about the content of the two documents. We assumed that this

kind of confusion would be similar to the memory of a typical known-item searcher.

We leave it as future work to verify whether this kind of trick realistically simulates

the state of memory for known-item finding.

We ask each user to find a total of 10 items. The score is determined by the

location of each target document in the final rank list—the higher the rank, the

higher the score. In what follows, we introduce two variants of the game that are

designed to evaluate different interaction methods.

5.5.1 DocTrack Search Game

The DocTrack search game is designed for collecting interaction data based on

keyword search. The DocTrack search game follows the scenario shown in Figure
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5.6, except that it allows only keyword search for finding the target document. We

collected the search log data used for experiments reported in Section 6.3.2.2 using

the game.

Compared to the method of collecting queries described in Section 6.1.1, using the

DocTrack game, we could gather a large quantity of realistic queries together with

the whole session log data. This in turn allows us to train discriminative learning

models, which typically requires a large amount of training data. We report on how

the data was used to train the type prediction model in Section 6.3.2.2.

5.5.2 DocTrack Search & Browsing Game

For evaluating the associative browsing model introduced in Chapter 4, we de-

signed the DocTrack search and browsing game. As shown in Figure 5.6, the par-

ticipants can find a target document by combining keyword search and associative

browsing. Figure 5.7 (front) shows the interface that people used to look through

the initial set of documents. The screenshot in the back of Figure 5.7 displays the

interface that people used to find the target document.

We ran two rounds of user studies with slightly different settings. In the first

round, users were asked to find the target document using only search and browsing

of documents. In other words, they did not have access to the concepts. In the

second round, concepts were available for searching and browsing, thereby providing

full access to the model. The rationale behind this two-stage design is to evaluate

the role of each system component and to help users gradually familiarize themselves

with the system. More details of the experiments can be found in Section 6.4.1.

5.5.3 Lessons Learned

We learned several lessons during our studies. First of all, we found out that it is

important to explain the method of gameplay since users can play games online at a

convenient location and time, whereas many user studies happen on-site. Especially
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Find It!                   

Target Item

Figure 5.7. The screenshot of the DocTrack Search and Browse game. Back: the
user interface for finding a target document by searching and browsing. Front: a
target document is being shown along with related concepts.

87



for our second study, since it involved a new method of finding the target documents,

we prepared a screencast explaining the functionality of the game interface in addition

to a couple of examples, which got positive reactions from the participants.

We also found that special attention is required to ensure that playing the game is

equivalent to using the system in a natural setting. Although one advantage of game-

based evaluation is that users are motivated to get higher scores than other users, this

competitive environment sometimes led to behavior that would not usually happen in

a natural setting, such as memorizing the whole title of the document. We adjusted

the scoring scheme of each search session so that users are discouraged from typing

in many keywords.

Lastly, keeping users interested in playing throughout the whole game is another

important factor for the successful data collection. One of the issues we had is that

users would randomly click on the ranked list when faced with items they are not

familiar with. The problem here is that the training data we extract from their clicks

will be noisy and the ranked list presented to them will not be of a very good quality.

We solved this issue by allowing users to skip to the next target item whenever they

feel like.

5.6 Three-stage Evaluation Methodology

In synthesizing different evaluation approaches introduced in this thesis as well

as previous work, we present a evaluation methodology based on different stages of a

research project, where each stage is designed to verify and refine research ideas with

the different level of progress.

5.6.1 Stage 1: Simulated Interaction

At an early stage of project, researchers would have only rough hypotheses about

the problem, with no facility (e.g., prototype software) to verify their ideas. Simulated
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interaction will be useful at this stage by guiding the implementation of the retrieval

method, and allowing them to make rough estimates on the relative performance of

different algorithms [46].

While simulated interaction in itself may not be sufficient for the final validation

of research ideas, it can be a first step by which initial hypotheses are verified and

the experimental infrastructures are prepared. If an initial hypothesis can be falsified

based on simulation results at this stage, further investment can be prevented. For

instance, an experimental retrieval algorithm may shown to underperform existing

methods significantly, and the plans for a user study can be delayed temporarily.

5.6.2 Stage 2: Controlled User Study

With the initial validation of research ideas through Stage 1, researchers can

perform a user study using simulated tasks using the simulated collection developed

in Stage 1. For instance, the game-based user study described in Section 5.5 can

be used here. In this stage, a prototype user interface can be built and checked for

usability, and various system parameters can be tuned based on log data.

User studies of this kind are less costly than diary studies since they do not require

client-side instrumentation and can be done within a short time. Another benefit is

the possibility of sharing the log data, since they do not use any private information.

However, sometimes its artificial nature becomes problematic, which requires the

naturalistic user study described in what follows.

5.6.3 Stage 3: Naturalistic User Study

While the evaluation method at Stage 2 can be used to perform evaluations with

reasonable human involvement, it is inadequate for some classes of research problems

because aspects of the collection and task are hard to model. For instance, evaluating

retrieval methods which exploits the user’s task context would require actual user

involvement.
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In this case, a long-term user study which involves the instrumentation of software

to users’ system may be required. Our suggestion is not to eliminate this kind of user

study completely, but to avoid it when simulation techniques can be an alternative.

After two stages of simulation studies, many factors that can potentially cause prob-

lems for user study would have been eliminated, which would greatly increase the

chances for success.

5.7 Summary

In this chapter, we first described several evaluation paradigms for personal in-

formation retrieval, and then introduced a set of methods for collecting documents,

generating queries and validating them. We also presented how the complex se-

quence of interactions can be generated by combining the keyword search model with

the browsing model.

We also proposed using a game-based user study for evaluating personal infor-

mation retrieval. We designed two types of games for evaluating field-based search

and associative browsing, respectively. Our experiments in Chapter 6 show that it is

possible to collect a large amount of log data from many participants, which then can

be used to train and evaluate both the search and browsing models we proposed.

Finally, we introduced a three-stage evaluation framework for personal informa-

tion. We described how the simulated evaluation and naturalistic user study can be

sensibly combined throughout the progress of a research project.

The proposed techniques are already adopted by PIR research community. Re-

cently, we organized a workshop1 based on the collections we created with these

methods. Also, several recent work [33] [38] suggested extensions to the methods

introduced here.

1Evaluating Personal Search Workshop in ECIR’11
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CHAPTER 6

EVALUATION RESULTS

In this chapter we present the experimental results for the retrieval and evaluation

methods we have introduced. We first describe several simulated test collections

we built using the methods introduced in Chapter 5, because these collections are

extensively used for the following experiments.

For the field-based search models (Chapter 3), a main goal of the experiments is to

evaluate the retrieval and type prediction methods against state-of-the-art baselines.

To ensure a comprehensive evaluation of the proposed methods, we used several well-

known structured document collections as well as the simulated test collections we

built. We also analyze the performance characteristics of field-based retrieval models

from the perspective of field relevance (or field weighting, equivalently).

For the associative browsing model (Chapter 4), we aim to evaluate its value in the

known-item finding task and the quality of browsing suggestions. We first evaluate

its ability to complement keyword search in the test collections we created, based on

both a user study and simulation results. Since we introduced a learning framework

for ranking candidates for associative browsing, we also present experimental results

for the quality of the ranking.

In what follows, we first describe the simulated test collections we built along with

several validation results. We then present the evaluation of retrieval methods we

proposed earlier—the field-based search models and the associative browsing model.
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Table 6.1. Number and average length of documents for pseudo-desktop collections.

Type Jack Tom Kate

email 6067 (555) 6930 (558) 1669 (935)
html 953 (3554) 950 (3098) 957 (3995)
pdf 1025 (8024) 1008 (8699) 1004 (10278)
doc 938 (6394) 984 (7374) 940 (7828)
ppt 905 (1808) 911 (1801) 729 (1859)

6.1 Simulated Test Collections

In this section, we describe two test collections we built for evaluating personal

information retrieval. As we introduced the methodology used for building these

collections in Section 5.2, we focus on describing the collections themselves here.

6.1.1 Pseudo-desktop Collections

Based on the method described in Section 5.2.1, we built three pseudo-desktops

collections so that they contain typical file types in a desktop such as emails, web-

pages (html) and office documents (pdf, doc and ppt) related to each of three specific

individuals.

To get the emails related to a person, we filtered the W3C1 mailing list collec-

tion where the name occurrences of each person were tagged [8], which enabled us to

identify several individuals whose activities in W3C were prominent. For other doc-

ument types, we collected up to 1,000 documents for each individual and document

type, using the Yahoo! search API with the combination of name, organization and

speciality of each pseudo-user as query words. In identifying the specialty of each

individual, we used a list provided by the TREC Enterprise Track [23].

Table 6.1 lists the statistics from the resulting pseudo-desktop collections corre-

sponding to three pseudo-users — “Jack”, “Tom” and “Kate”. Although these are

1W3C is an international organization which focuses on numerous standardization efforts regard-
ing the internet.
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Table 6.2. Example queries from TREC Enterprise track and pseudo-desktop col-
lections.

TREC Manual Queries

Preliminary Report from the WSDL Attributes Task Force
XML DSig 99

MobiQuitous 2004 latest deadlines

Pseudo-desktop Manual Queries

Martyn Jan OCLC
proof checking
syntax for RDF

Pseudo-desktop Generated Queries

jose 03 kahan
john descendent boy

connolly sat

prominent figures in W3C and all the collected documents are publicly available, we

have anonymized their names for privacy reasons. Table 6.2 shows example queries

from the TREC Enterprise Track, as well as the manual and generated queries from

the pseudo-desktop collections.

6.1.2 CS Collection

We created the CS collection by gathering public documents from the Com-

puter Science department of the University of Massachusetts Amherst. Following

the methodology introduced in Section 5.5, we collected emails from the department

mailing list, news articles and blog postings on technology, calendar items of depart-

ment announcements, webpages and office documents crawled from the department

and lab websites.

Table 6.3 shows the overall statistics of the collection. For all document types,

title and content fields were indexed. There were also type-specific fields such as date,

sender and receiver for email, tag and author for news articles, starttime and location

for calendar items, URL for webpages, and filename for office documents.

We had 20 participants who were students, faculty members and staffs in the

department, all moderately familiar with the documents in the collection. In total,
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Table 6.3. Number and average length of documents in a computer science (CS)
collection.

Type #Docs Length

email 851 731
news article 170 352
calendar item 354 306
webpage 4727 539
office document 1887 357

Table 6.4. Query examples with corresponding target collections for a CS collection.

Query Target Collection
reminder jeffrey johns email
2010 candidate weekend calendar item
yanlei xml dissemination office document
cs646 homework html html

66 DocTrack games were played and 984 queries were collected using 882 target

documents, some of which are shown in Table 6.4.

The average length of queries was 3.97, which is longer than the reported length (2)

in other desktop search studies [30]. This may be due to people paying more attention

to the task in the competitive game setting compared to a typical desktop search.

The standard deviation (1.85) of the query length was also quite high, implying that

there was a considerable variation among the querying behavior of individuals.

6.2 Validating Generated Queries

We now present validation results for generated queries based on the techniques

described in Section 5.3.3. Generated queries are verified in terms of predictive and

replicative validity using some of the retrieval methods described in Section 3.2.1.

Since the validation methods require a set of queries formulated by humans, we ex-

periment with TREC Enterprise track queries, where we have 150 known-item finding

queries with target documents.
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Table 6.5. Sum of generation likelihood (in log) for different generation methods
on TREC queries. Field-based generation method with TF*IDF-based term selection
show highest likelihood.

Extent : Document Extent : Field
Pterm

∑

q∈Q PD
term(q) Pterm

∑

q∈Q P F
term(q)

Uniform -26.457 Uniform -23.460
TF -22.782 TF -22.394
IDF -21.876 IDF -17.990
TF*IDF -18.269 TF*IDF -17.180

6.2.1 TREC Collection

We first report the verification result of predictive validity using the generation

likelihoods of 150 TREC queries. As we discussed in Section 5.3.3.1, we aggregated

the likelihood that each manual query q ∈ Q would be generated from the term distri-

bution Pterm of each generation method. Table 6.5 shows that field-based query gener-

ation methods have higher likelihoods of generating manual queries than document-

based generation methods. Although it does not provide an absolute criteria for

judging the equivalence to TREC queries, it shows that the term distributions for

field-based generation methods are relatively similar to manual queries. Among the

term selection methods, term selection by TF*IDF was shown to have a higher prob-

ability for generating TREC queries, reflecting people’s behavior of choosing popular

and discriminative terms.

We then evaluated each query generation method in terms of the replicative va-

lidity using the Kolmogorov-Smirnov (KS) test as discussed in Section 5.3.3.2. The

results are in Table 6.6. Each cell contains the average p-value of the KS-test for the

score distributions of TREC queries and generated queries using the corresponding

retrieval method. Here, the values greater than 0.05 means that we cannot reject the

null hypothesis that the score distribution from the generated queries and manual

queries are indistinguishable, thereby providing some evidence on the equivalence in

the output of generated and manual queries.
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We experimented with Document Query-Likelihood (DQL) [66], BM25F, the Mix-

ture of Field Language Models (MFLM), the Probabilistic Retrieval Model for Semi-

structured data (PRM-S) and the Field Relevance Model (FRM). Here we report only

the results of DQL, PRM-S and PRM-D because they were the retrieval models for

which replicative validity was established for any of the query-generation methods.

The result shows that the field-based query generation methods have higher p-values

in general, and the uniform or TF-based term selection methods have p-values greater

than the threshold (0.05) for all retrieval models tested.

The verification results for predictive and replicative validity do not completely

agree in the sense that the generation method with highest predictive validity (field-

based generation with TF*IDF term selection) does not have the highest replicative

validity for the retrieval models we experimented with. As mentioned before, a pos-

sible cause is that the replicative validity is verified by comparing score distributions,

which can be affected by many factors other than the collection statistics of query

terms.

The results in Table 6.6 support this explanation since the field-based generation

method with the TF*IDF term selection has the highest replicative validity for DQL

yet fails on PRM-S and PRM-D, which incorporate the mapping probability into the

field-level query likelihood score. This is also consistent with the results of Azzopardi

et al. [7] where TF*IDF term selection method was shown to have highest replicative

validity for document-based retrieval models. Despite this, we can conclude that

field-based generation is more valid for use in semi-structured document retrieval

experiments, since it was shown to have both higher predictive and replicative validity

in overall.
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Table 6.6. P-values of Kolmogorov-Smirnov test for different query generation meth-
ods on TREC queries. Queries generated with field-based method have higher p-
values in overall.

Extent Pterm DQL PRM-S PRM-D

Document Uniform 0.003 0.000 0.041
TF 0.090 0.000 0.005
IDF 0.000 0.023 0.000
TF*IDF 0.000 0.160 0.000

Field Uniform 0.085 0.323 0.276
TF 0.105 0.667 0.570
IDF 0.068 0.013 0.008
TF*IDF 0.284 0.021 0.022

6.2.2 Pseudo-desktop Collections

Since the validation methods described in Section 5.3.3 requires hand-written

queries, we collected hand-written queries for the three pseudo-desktop collections by

showing people a set of documents and asking for a query they would use to find

each of the documents. Note that this procedure was later improved to create the

DocTrack game described in Section 5.5.

Specifically, we first showed each participant a set of target documents. After

a time period, we asked them to formulate a query based on their memory of a

document assuming that the document is to be found in the desktop. Three people

participated in this experiment and a total of 50 queries were manually generated for

each email sub-collection of the three pseudo-desktops.

The result in Table 6.7 shows the same trends as the TREC collection, recon-

firming the replicative validity of field-based generation methods, especially when

query-terms were selected randomly or based on term frequency. Document-based

generation methods show replicative validity only for some of the retrieval models.

Since the sample size for the hand-written query set was smaller (50) than that of

the TREC collection (150), we set a higher threshold (0.1) for the p-value.
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Table 6.7. P-values of Kolmogorov-Smirnov test for different query generation meth-
ods in pseudo-desktop collections.

Extent Pterm DQL PRM-S PRM-D

Document Uniform 0.068 0.417 0.129

TF 0.058 0.619 0.244

IDF 0.000 0.116 0.003
TF*IDF 0.000 0.266 0.007

Field Uniform 0.621 0.299 0.406

TF 0.456 0.207 0.605

IDF 0.110 0.027 0.061
TF*IDF 0.227 0.030 0.066

6.3 Field-based Search Models

In this section, we describe experiments for verifying the effectiveness of the field-

based search models we proposed. We first describe experiments with the field-based

retrieval methods in existing structured document collections, followed by experi-

ments on the type prediction and final (merged) retrieval performance in simulated

collections of personal information.

6.3.1 Evaluation in Structured Document Collections

Here we present experiments for evaluating field-based retrieval models in struc-

tured document collections. We introduce the collections and other experimental

settings. We used three collections with different document and query characteris-

tics, and varying numbers of relevant documents per query.

First, we used a well-known TREC collection for structured documents (emails).

The TREC 2005 Enterprise track known-item task [23] used a crawl of the W3C

mailing list, containing 198,394 documents with average length of 10kb. For each

document, the indexed fields were subject, body, to (receiver), date and from (sender).

Among the 150 queries provided, according to the TREC guideline, 25 were set aside

for training of model parameters and the rest were used for testing. This collection

has only one relevant document per query.
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We also used the IMDB2 collection, which consists of 437,281 documents. Each

document here corresponds to a movie and was constructed from the text data down-

loaded from the IMDB website3. The fields were title, year, releasedata, language,

genre, country, location, colorinfo, cast, team. We used 50 queries (10 for training

and 40 for evaluation) developed in a previous study [51]. This collection has two

relevant documents per query on average.

Finally, we used the Monster4 job description collection composed of 1,034,795

documents. Here, the documents were longer, with mostly full-text content. Each

document is composed of fields like resumetitle, summary, jobtitle, school, experience,

location ,skill and additionalinfo. The 60 queries we used (20 for training and 40 for

evaluation) were requests for job descriptions created by real users of the Monster

service. This collection has 15 relevant documents per query on average.

During indexing, each word was stemmed using the Krovetz stemmer and standard

stop words were eliminated. Indri5 was used as a retrieval engine for all the retrieval

experiments. Mean Average Precision (MAP) was used as the measure of retrieval

performance for all experiments, since there were one or more relevant documents for

each query with no grades in relevance judgments.

For baselines in our experiments, we used DQL [66], BM25F [70], MFLM [64].

We evaluate PRM-S and the Field Relevance Model against these baselines. Since we

introduced several techniques for field relevance estimation, we evaluated the estima-

tion based on the combination of sources (FRM) and the oracle estimation based on

a set of known relevant documents (FRMO).

2IMDB is the largest collection of movie resources on the web. http://www.imdb.com

3Available in http://www.imdb.com/interfaces#plain

4Monster is one of the largest websites for online hiring and job search. http://www.monster.com

5http://www.lemurproject.org
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Table 6.8. The distribution of relevant fields in each collection. Each number denotes
the number of query terms found in the respect field of the relevant documents.

Collection Distribution of Relevant Fields
TREC subject:307 body:220 to:44 date:11 from:1
IMDB title:43 actors:30 genre:13 team:11 year:4 location:2 country:1
Monster jobtitle:86 location:58 resumetitle:52 school:16 skill:19 experi-

ence:19 summary:1

Since each retrieval model required a different set of parameters to be tuned in

advance, we used a training and test split for each query set. For parameters that

required training for each document field, such as per-field weights wj and bj, we

performed a coordinate ascent search using training queries which find the best-

performing parameter combination. As for the field relevance model (FRM) we sim-

ilarly found the mixture weights Λ that maximize the retrieval performance in the

training queries.

6.3.1.1 Statistics of Field Relevance

We first show the distribution of relevant fields in each collection we used. For

our measurement, we calculated the oracle field relevance estimate using relevant

documents for each query, and then took the field with highest relevance for each query

term. That is, these are the fields most likely to generate each query term from the

field-level language model of relevant documents. Table 6.8 shows the statistics, where

it is clear that the field relevance is spread across many fields in all the collections

we tested. These results are consistent with the evidence in Section 3.2.2, where we

presented the statistics of field distributions for queries from previous work.

Figure 6.1 shows the examples of Indri queries taken from each collection, where

weights are again estimated using relevant documents for each query. We can see

that each query term has matches in many different fields.
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#combine(

#wsum(1.000 Basic.(body))

#wsum(1.000 Authentication.(body))

#wsum(1.000 Microsoft.(subject))

#wsum(0.925 IE.(subject) 0.075 IE.(body))

#wsum(1.000 removed.(body)))

#combine (

#wsum(1.000 tom.(actors))

#wsum(1.000 hank.(actors))

#wsum(0.819 1994.(year) 0.181 1994.(releasedate)))

#combine (

#wsum(0.421 flight.(resumetitle) 0.364 flight.(jobtitle)

0.185 flight.(experience) 0.029 flight.(school))

#wsum(0.468 control.(resumetitle) 0.336 control.(jobtitle)

0.169 control.(experience) 0.027 control.(school))

#wsum(0.592 engineer.(jobtitle) 0.337 engineer.(resumetitle)

0.060 engineer.(experience) 0.011 engineer.(school))

#wsum(0.714 kansas.(location) 0.217 kansas.(school)

0.068 kansas.(experience))

Figure 6.1. Indri query with oracle field relevance estimate from TREC, IMDB and
Monster collection, respectively.
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Table 6.9. Retrieval performance for three collections used. FRMO is based on the
oracle estimate of field relevance.

DQL BM25F MFLM PRM-S FRM FRMO

TREC 0.542 0.597 0.601 0.624 0.668 0.794
IMDB 0.408 0.524 0.612 0.637 0.657 0.704
Monster 0.429 0.279 0.460 0.542 0.558 0.716

6.3.1.2 Retrieval Effectiveness

Table 6.9 shows retrieval results for all the collections. Although the difference

varies for each collection, PRM-S and the variants of FRM consistently improves

baseline methods in all collections we tested. Among baseline methods, field-based

retrieval models (BM25F and MFLM) showed better performance except for the case

of BM25F model in the Monster collection, which might be due to the parameter

estimation using a small number (20) of training queries.

The improvements over DQL, BM25F and MFLM methods were statistically sig-

nificant (using the paired t-test with p-value < 0.05) in all three collections we tested.

Especially, the performance of FRM in TREC collection represents an improvement

over an already strong baseline (the best performance among TREC submissions was

0.621 [22]).

Finally, oracle estimates of field relevance in FRMO shows the upper bound of

performance one can get with ideal field relevance estimation. Oracle estimates were

derived from the known relevant documents in each test collection, as described in

Section 3.2.4.2.

Note that the only difference between MFLM, PRM-S and FRM is how field

weights are estimated. Since FRM employs the per-field weights in MFLM and the

unigram collection field-language model in PRM-S as the sources of combination, we

can infer that the additional sources used for FRM resulted in the improvement.

To gain further insights into the impact of different sources on retrieval effective-

ness, we performed a feature ablation study where we omitted a set of sources from
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Table 6.10. Feature ablation results in TREC collection. Each column denotes the
performance where top-k document features (tug/tbg), bigram features (cbg/tbg),
collection features (cbg/cug) and prior feature were omitted, respectively.

Features None tug/tbg cbg/tbg cbg/cug prior
Omitted
MAP 0.668 0.662 0.651 0.648 0.644

the estimation of field relevance. We denote here five sources used for field relevance

estimation as cug (collection unigram field-level language model (FLM)), cbg (col-

lection bigram FLM), tug (top-k documents unigram FLM), tbg (top-k documents

bigram FLM), and prior (per-field weight estimated using training queries). More

detailed descriptions can be found in Section 3.2.4.3.

The results in Table 6.10 shows the impact from the omission of each source group

on performance. You can see that all the source groups have a positive impact on the

performance, and the omission of prior has the most impact on performance. This

shows the importance of having a reliable back-up method in case the per-term field

relevance estimation is difficult.

6.3.1.3 Field Relevance Estimation and Retrieval Performance

Since we hypothesized that the performance advantage of FRM is based on im-

proved estimation of field relevance, we then compared retrieval models in terms of

the quality of field relevance estimates. For this experiment, we used three similarity

metrics for field relevance introduced in Section 3.2.4.5, which measure the similar-

ity of given estimates with the oracle estimates. The initial letter for each retrieval

model (MFLM, PRM-S, FRM) is used as a subscript to denote the estimates used in

different retrieval methods.

The results in Table 6.11 show that the field relevance model (FRM) improves

estimation quality over MFLM and PRM-S, which use limited sources for field rel-

evance estimation. This result is consistent with our expectation that per-field and
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Table 6.11. Quality of estimated field relevance compared to oracle estimation using
the aggregated per-term KL-divergence (KL), cosine similarity (Cos) and precision
(P@1). Higher value means higher quality, except for KL.

KLM KLP KLF CosM CosP CosF P@1M P@1P P@1F
TREC 2.994 1.099 0.821 0.636 0.719 0.765 0.528 0.582 0.642
IMDB 2.764 0.723 0.529 0.405 0.814 0.876 0.478 0.802 0.820
Monster 4.121 1.481 1.381 0.358 0.650 0.675 0.015 0.467 0.481

Table 6.12. The correlation of the difference in query-level retrieval performance
and the quality of field relevance estimate between PRM-S and FRM.

diff(MAP) diff(Cos) diff(KL)

diff(Cos) 0.448
diff(KL) -0.505 -0.851
diff(Prec) 0.233 0.804 -0.563

per-term estimation in PRM-S is better than per-field estimates in MFLM, and that

the quality of estimation is improved by the combination of sources for FRM.

We further quantified the impact of field relevance estimation quality on the per-

formance in the TREC collection, measured in terms of the correlation in query-level

differences. For each query, we took the difference in MAP and three metrics of qual-

ity for field relevance between PRM-S and FRM. We then calculated the correlation

of the differences in the query-level retrieval performance and the quality of field

relevance estimate.

Table 6.12 shows the results, where the difference in retrieval performance has

high correlation with all three quality metrics of field relevance. Among the quality

metrics for field relevance, Kullback-Leibler divergence and cosine similarity showed

higher correlation to performance than precision. From this we can see that the

improvement in FRM can be attributed to better estimation of field relevance.

We also provide an example with the query ‘Basic Authentication Microsoft IE

removed’ that shows the difference in the field relevance estimate between PRM-S

and FRM. Comparing with the oracle estimate in Figure 6.1, we can see that the

104



#combine(

#wsum(0.530 Basic.(subject) 0.465 Basic.(body))

#wsum(0.780 Authentication.(subject)

0.215 Authentication.(body))

#wsum(0.693 Microsoft.(from) 0.222 Microsoft.(to))

#wsum(0.496 IE.(from) 0.196 IE.(to))

#wsum(0.575 removed.(subject) 0.413 removed.(body)))

Figure 6.2. An Indri query example with field relevance estimate based on PRM-S.

#combine(

#wsum(0.634 Basic.(subject) 0.364 Basic.(body))

#wsum(0.762 Authentication.(body)

0.238 Authentication.(subject))

#wsum(0.400 Microsoft.(subject) 0.347 Microsoft.(from))

#wsum(0.618 IE.(body) 0.21 IE.(subject))

#wsum(0.709 removed.(body) 0.289 removed.(subject))

Figure 6.3. An Indri query example with field relevance estimate based on FRM.

field relevance estimate in PRM-S makes more mistakes for this query compared to

that of FRM.

Most notably, the from field was given the highest weight for query term ‘Mi-

crosoft’ in PRM-S, whereas subject field correctly got the highest weight in FRM.

Considering that the term is likely to appear in senders and receivers of an email very

frequently, it is understandable that PRM-S incorrectly assigned it to those fields.

However, the combination-based estimate in FRM helped avoid the same mistake.

6.3.2 Evaluation in Simulated Test Collections

In this section, we describe the experiments for verifying the effectiveness of the

type prediction and retrieval methods in the simulated collections we created. Recall

from Section 3.1 that the final retrieval score is the function of both type prediction

score (collection-level) and retrieval score (document-level).
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We used three pseudo-desktop collections with generated queries for the first ex-

periment, where we compared several type prediction methods and showed the impact

of type prediction on the final ranking. We then report on experiments using the CS

collection where queries were collected by the DocTrack game.

Four retrieval methods were used for each sub-collection (DQL / PRM-S / PRM-

D / Best) and four methods (Uniform / CQL / FQL / Oracle) were used for type

prediction. Since we wanted to use only the retrieval methods for which we confirmed

the validity of generated queries, we compared Document Query-Likelihood (DQL)

[66], the Probabilistic Retrieval Model for Semi-structured data (PRM-S) and the

interpolation between the two (PRM-D).

Among the type prediction methods, we compared only CQL and FQL for the

pseudo-desktop experiment, since CQL was shown to be the most effective among

collection scoring methods [83] and FQL is the extension of CQL for semi-structured

document collections. Section 6.3.2.2 provides the comparison with other type pre-

diction methods using the CS collection and queries from the DocTrack game.

With type-specific rank lists from sub-collection retrieval and collection scores

from the type prediction component, we can produce the final rank list by rank-

list merging algorithms. As introduced in Section 3.1, we use the well-known CORI

algorithm for merging [14].

For the “Best” retrieval method, we used the retrieval method with the best

aggregate performance for each sub-collection, making the assumption that the best-

performing retrieval method is known in advance. For “Uniform” and “Oracle” collec-

tion scoring, we considered that each collection has the same chance of containing the

relevant document (Uniform) or that we have the perfect knowledge of the collection

that contains the relevant document (Oracle).
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Table 6.13. Accuracy of type prediction in pseudo-desktop collections. The num-
bers indicate the percentage that the correct collection is ranked the highest for the
corresponding type prediction method the collection.

Jack Tom Kate
CQL 0.606 0.637 0.380
FQL 0.773 0.807 0.640

6.3.2.1 Pseudo-desktop Collections

Three pseudo-desktop collections described in Section 6.1.1 were used for these

experiments. Each collection contained typical file types such as email, webpage

and office documents related to each of three individuals. For each experiment, we

generated 50 queries of average length 2 where target documents were taken from

each sub-collection in proportion to the number of documents it contains. All the

experiments were repeated three times since the query generation procedure involves

randomness.

In Table 6.13, we compare the accuracy of type prediction in pseudo-desktop col-

lections for the CQL and FQL methods, where FQL shows a clear improvement over

the CQL method. Although this result should be interpreted with some reservations

because we are using simulated queries, the same trend was found in the experiment

using manual queries. We also observe that both methods show reasonable perfor-

mance in the Jack and Tom collections, which contain far more email documents

than other types. From this, we can conclude that both methods are relatively ro-

bust against an imbalance of sub-collection sizes.

We report the retrieval performance for the same queries in Table 6.14. The first

noticeable trend is that both the choice of type-specific retrieval model and type

prediction method has a big impact on the final result. In particular, Oracle type

prediction was much better than the FQL method, which in turns outperformed CQL

across all collections. On the other hand, the Best retrieval method was not much

better than the PRM-D and PRM-S methods.
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Table 6.14. Retrieval performance in three pseudo-desktop collections using different
type-specific retrieval methods and type prediction methods. The numbers indicate
the MAP for the final merged ranking.

Jack Tom Kate
Uniform CQL FQL Oracle Uniform CQL FQL Oracle Uniform CQL FQL Oracle

DLM 0.129 0.159 0.270 0.331 0.104 0.123 0.192 0.224 0.126 0.12 0.237 0.294
PRM-S 0.152 0.212 0.326 0.403 0.150 0.209 0.289 0.348 0.232 0.239 0.383 0.532
PRM-D 0.148 0.219 0.335 0.403 0.155 0.204 0.289 0.346 0.250 0.245 0.387 0.538
Best 0.154 0.225 0.336 0.414 0.157 0.217 0.302 0.361 0.241 0.245 0.388 0.542
Average 0.146 0.204 0.317 0.388 0.141 0.188 0.268 0.320 0.212 0.212 0.349 0.477

6.3.2.2 CS Collection

We report on experiments using the computer science (CS) collection, where the

documents of various types are collected from many public sources in the UMass

Computer Science department. More details of the collection can be found in Section

6.1.2.

We used 528 queries to obtain query-log feature (QQL) values and training param-

eters for other features, since some of features required data for estimation. The rest

(456) of the queries were used to evaluate the type prediction performance of features

and combination methods by 10-fold cross-validation. For the retrieval experiments,

since many queries did not return any documents, we used only queries where the

relevant document was ranked in the Top 50 result set during the DocTrack game.

Table 6.15 summarizes the prediction accuracy results, comparing two of the

best-performing single feature runs (CQL / FQL) and combination methods (Grid /

RankSVM / MultiSVM). Recall that the combination methods employ scores from

several type prediction methods as features, including CQL and FQL methods. Again,

the numbers indicate the percentage that the correct collection is ranked the highest

for the corresponding type prediction method.

The result shows that all the combination runs improved performance over the

best single feature runs given by FQL, which outperformed CQL in this collection as

well. MultiSVM was shown to be the most effective among the combination methods.

108



Table 6.15. Accuracy of type prediction for best-performing individual type predic-
tion methods and combination methods in the CS collection.

Method CQL FQL Grid RankSVM MultiSVM

Accuracy 0.708 0.743 0.747 0.758 0.808

Table 6.16. Significance test results for type prediction accuracy in a CS collection.
Each cell shows the p-value of paired t-test between the accuracy of two methods.

Method CQL FQL Grid RankSVM MultiSVM

CQL 0.03 0.00 0.00 0.00
FQL 0.69 0.27 0.02
Grid 0.41 0.02
RankSVM 0.07

This is understandable considering that we had one target collection for each query,

which is a natural setting for multi-class classification. RankSVM was slightly better

than Grid but the difference was not significant.

The result of a significance test is reported in Table 6.16, which shows that the

performance differences between CQL and all the other methods are significant with

a p-value of 0.05 and that MultiSVM outperforms all the other methods significantly

with a p-value of 0.1 (using paired t-test). Overall, this means that the suggested

type prediction method (FQL) improves the performance of the CQL method and

that the combination of features improves the performance further.

Table 6.17 shows the retrieval performance, comparing four retrieval methods

(DQL / PRM-S / PRM-D / Best) and the same set of type prediction methods as

above in addition to Oracle and Uniform methods.

Table 6.17. Retrieval performance in a CS collection using different type-specific
retrieval methods and type prediction methods.

Uniform CQL FQL Grid RankSVM MultiSVM Oracle Average

DQL 0.343 0.507 0.53 0.552 0.563 0.556 0.674 0.526
PRM-S 0.349 0.501 0.518 0.518 0.551 0.547 0.674 0.520
PRM-D 0.360 0.518 0.536 0.536 0.567 0.564 0.694 0.537
Best 0.372 0.548 0.564 0.590 0.596 0.594 0.720 0.563

Average 0.356 0.518 0.537 0.549 0.569 0.565 0.691
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The result mostly shows the same trends as the pseudo-desktop collections despite

a big difference in experimental conditions (recall that queries were algorithmically

generated for the pseudo-desktop collections). FQL was better than CQL and all the

combination methods outperformed CQL and FQL significantly (with paired t-test

using the p-value of 0.05).

The only exception was that the performance of MultiSVM was slightly worse than

RankSVM. Given the superior prediction accuracy of MultiSVM, it seems that the

procedure of converting the SVM output into the type prediction score caused some

problems. We can also see that Oracle type prediction method and the Best retrieval

method outperform other methods, which leaves room for further improvement in

both type-specific retrieval and type prediction.

6.4 Associative Browsing Model

In this section, we present the experimental results for the associative browsing

model. Based on the simulation results as well as the log data collected during the

DocTrack game, we first analyze the role of associative browsing for the known-item

finding task. We then focus on the quality of the suggestions generated by the learning

method described in Section 4.2.

6.4.1 Evaluation based on DocTrack User Studies

We first evaluate the effectiveness of associative browsing in the known-item find-

ing task. We performed two rounds of game-style user studies in which participants

were asked to find randomly chosen documents. We use the term ‘session’ to denote

the process of finding each target document. We have 290 sessions from Round 1 and

142 sessions from Round 2, where users had the option to make use of the concept

space in Round 2.
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Table 6.18. Statistics of the sessions with search and browsing. Users had the option
to user the concept space in Round 2.

Round Total Browsing Successful
used

1st 290 42 (14%) 15 (36%)
2nd 142 43 (30%) 32 (74%)

6.4.1.1 Usage and Effectiveness of Browsing

As we can see from Table 6.18, the percentage of sessions during which users

chose to browse as well as search was 14% (or 42 sessions) for Round 1 and 30% (or

43 sessions) for Round 2. The significant percentage of users who decided to use the

browsing indicates that users would like to have the option of browsing in addition

to search. Moreover, the fact that we have a higher browsing usage rate in the

second round seems to suggest that the concept space provided further motivations

for browsing.

Out of the 42 sessions in Round 1 involving both searching and browsing, 36%

(or 15 sessions) of them were successful, i.e., the user found the required document.

For Round 2, this percentage is 74% (or 32 sessions). The higher successful rate in

the second round can be attributed to the presence of the concept layer. In fact,

many users commented that they could find the target document using the concepts

as an intermediate step. Another interesting comment is that browsing was helpful

for thinking of good query words.

6.4.1.2 Efficiency of Browsing

To investigate the efficiency of user’s individual actions, we then looked at the

average time for each type of user action. The results in Table 6.19 shows that

it takes a much shorter time for the user to make a click decision on the ranked

list of concepts compared to the ranked list of documents. This is understandable

considering that the titles of concepts (e.g., person names) are much easier to read
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Table 6.19. Average time for each type of user’s action.

User’s Action Average Time (seconds)

Click on a Concept 8.50
Click on a Document 13.63
Keyword Search 15.14

than the titles of typical documents. By comparison, keyword search took longer

than both types of browsing action.

In summary, the analysis of user behavior shows that the users find associative

browsing helpful for known-item finding in some cases, and the use of concept layer

makes the interaction more effective and efficient.

6.4.2 Evaluation based on Simulated User Model

We now report on the experiments using the simulated user model described in

Section 5.4, comparing the outcome with those from the user study. As for the

parameters of keyword search model, we used the language model of a document for

Pterm, and set the query length to 1.5 on average, following the average query length

from previous studies [30] [27]. For the associative browsing component of the user

model, based on the user model described in Section 5.4.2, we experimented with

three levels of user’s knowledge (random, informed and oracle), fan-out of 1 to 3, and

breadth-first search (BFS) and depth-first search (DFS) browsing strategies.

In modeling the transitions between states, we made several assumptions. First,

the user chooses to browse only when the ranked list returned by keyword search looks

marginally relevant. Second, there is no transition from browsing back to search. It

is left for future work to relax these assumptions to create a more realistic model of

the transitions.

We use the term marginally relevant for the case where the target document is

located between the rank position of 11 to 50. Whenever the target document is found

within top 10 positions, we consider the session as successful and the interaction is
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finished. The session is unsuccessful if the user fails to find the target document

within 10 trials.

For each target item, we ran the simulated user model described above. In order to

keep the quality of ranking consistent, we used a simple vector space model based on

the Lucene search engine toolkit6 for both keyword search and associative browsing

(i.e., we used only the content similarity feature among the features introduced in

[50]). Finally, since the simulation involves the random generation of user behavior,

we ran all the experiments 10 times and report the average results.

6.4.2.1 Usage and Effectiveness of Browsing

We now discuss the results from the simulation experiments. Table 6.21 shows

the success ratio of browsing aggregated across three models of user’s knowledge and

fan-outs. As mentioned above, the success ratio here denotes the portion of sessions

where browsing led to success among all sessions whose initial queries were marginally

relevant.

In aggregate, the results in the first row of Table 6.20 show that browsing was used

for about 15% of sessions. Since we designed the user model so that it starts browsing

only when initial search result is marginally relevant, this indicates the quality of

keyword query we used — 15% of queries found the target document between the

rank of 11 to 50. If we look at the success ratio results, about 42% of sessions using

the browsing were successful in the end, showing that associative browsing effectively

complements keyword search.

We also compare the results with those from our previous user-based evaluation

in Table 6.20. We found that the success ratio of the simulation study is similar

to the ratio of successful browsing sessions based on the user study we reported in

6http://lucene.apache.org
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Table 6.20. The ratio of the sessions where the simulated user model chose to use
browsing and the choice of browsing led to a successful retrieval, in comparison to
the user study results.

Evaluation Total Browsing Successful
type used

Simulation 63,260 9,410 (14.8%) 3,957 (42.0%)
User Study 290 42 (14.5%) 15 (35.7%)

our previous work, which suggests that the assumptions we made in the simulation

experiments are reasonable.

6.4.2.2 Varying Simulation Parameters

With respect to different levels of user knowledge, even when the user browses

randomly without any knowledge of the target document, the chance for success is

almost 30%, showing that associative browsing is an effective alternative to search

even when we do not make any assumptions about user knowledge. At the same time,

however, the success ratio of browsing was no higher than 50%, showing that there

are cases where the target document simply cannot be reached by browsing.

An interesting trend in Table 6.21 is the relationship between the user’s level of

knowledge and fan-out. We originally expected that the oracle user would outperform

others at all fan-outs, yet it was found that higher fan-out (more exploration) only

hurts the oracle user whose level of knowledge is very high yet always make a locally

optimal decision.

In contrast, the success ratio of the random user increased with higher fan-out,

which shows that exploration is valuable only when the user’s level of knowledge is

low. Overall, the informed user with a fan-out of two gave the best performance.

Table 6.21. Success ratio of browsing for marginally relevant queries.

random informed oracle

FO1 0.337 0.401 0.424

FO2 0.408 0.453 0.441
FO3 0.442 0.436 0.426

114



Table 6.22. Average length of successful browsing session.

random informed oracle

FO1 1.417 1.391 1.266

FO2-BFS 2.186 1.904 1.661

FO3-BFS 2.083 1.959 1.814

FO1 1.417 1.391 1.266

FO2-DFS 2.280 1.928 1.257

FO3-DFS 2.327 1.805 1.323

As for the fan-out, we can see that more fan-out leads to more success, as we might

expect. What is surprising is that higher fan-out did not help the oracle user model

as it did the random or informed user model. The success rate for the oracle user is

much higher than others when fan-out is 1, yet at fan-out 3, the informed user shows

higher success rate than the oracle user. Although this may seem counterintuitive at

first glance, presumably some level of exploration might be required in getting to the

target document.

We then looked at the efficiency of using browsing for known-item finding, which

we measured by the average length of successful browsing sessions — how many clicks

it took for the user to find the target document. Here we compared three levels of

user’s knowledge and two browsing strategies — BFS and DFS for each fan-out.

The results in Table 6.22 show that one or two clicks are usually sufficient to get

to the target document by browsing. Comparing different levels of user knowledge,

the oracle user model is always more efficient, followed by informed and random. We

can conclude that the user’s level of knowledge has a direct influence on the efficiency

of browsing.

Among different browsing behaviors, it is clear that higher fan-out (more explo-

ration) leads to lower efficiency in most cases, as we would expect. A less obvious

trend is that the random user is more efficient with BFS strategy (exploration first),

while the oracle user is more efficient with DFS strategy (exploitation first). Again,

115



we can infer that higher levels of knowledge makes exploitation more valuable than

exploration.

In summary, the simulation experiments show that associative browsing provides

an effective (30-40% of success) and efficient (within 1–2 clicks) way of getting to the

target document when keyword search is marginally relevant. Comparison of results

across different levels of user knowledge and browsing behavior reveals the influence of

various aspects of the user on the effectiveness and efficiency of associative browsing

for known-item finding.

6.4.3 Evaluation of Browsing Suggestions

For evaluating the effectiveness of suggestions for browsing, we employed three

test collections. Two volunteers, Person 1 and Person 2, used some of their personal

information to create two of the collections. The former contains 8,841 documents

and 368 concepts and the latter contains 9,441 documents and 945 concepts. Both

collections are mostly composed of emails, webpages, and desktop files. As far as the

clicks we used for training are concerned, Person 1 clicked 145 times on the ranked

list of concepts and 58 times on the ranked list of documents. Person 2 had 196 clicks

and 204 clicks on concepts and documents, respectively.

The third dataset is the CS collection introduced in Section 6.1.2. This collection

is composed of 7,984 documents and 650 concepts. For click data, we used the data

from a user with highest number of clicks (CS/Top1). We also experimented with

the aggregate data from the five users with most clicks (CS/Top5). The number of

items and clicks are summarized in Table 6.23.

For learning methods, we used our own implementation of Iterative Grid Search

and SVMrank [40], which is a popular implementation of RankSVM. To facilitate the

training of SVMrank, each feature value was scaled to values that were approximately
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Table 6.23. Number of documents, concepts, and clicks in the case of document
similarity and concept similarity experiments for each of the collections we used.

#Items #Clicks
Document Concept Document Concept

Person 1 8841 368 58 129
Person 2 9411 945 204 196
CS/Top1 7984 650 145 42
CS/Top5 ” ” 309 220

Table 6.24. Concept ranking performance (MRR) for the single-feature and com-
bination methods. 10-fold cross-validation was used for grid search and RankSVM
(SVM).

Collection title content tag time string cooc occur Grid SVM
Person 1 0.097 0.229 0.194 0.136 0.136 0.241 0.151 0.236 0.277

Person 2 0.037 0.350 0.403 0.221 0.310 0.516 0.234 0.581 0.509
CS/Top1 0.142 0.179 0.289 0.235 0.107 0.191 0.195 0.255 0.433

CS/Top5 0.184 0.127 0.170 0.155 0.100 0.158 0.222 0.301 0.340

between 0 and 1. We also used 10-fold cross validation for training feature weights

and evaluating the system.

In order to measure retrieval performance, we used the Mean Reciprocal Rank

(MRR), which is the average of reciprocal of click positions. We also used clicks as

relevance judgments, which is an approximate yet reasonable assumption made in

many studies.

6.4.3.1 Quality of Browsing Suggestions

Here we present the evaluation results on the quality of ranking for browsing sug-

gestions. We compared the performance obtained when each feature was used by itself

and when three combination methods were used—feature values with equal weights

(Uniform), weights obtained with grid search (Grid) and with RankSVM (SVM ),

respectively. Note that title and content are term vector similarity features, where

the title and the content field were used for constructing term vectors, respectively.

Table 6.24 shows the concept ranking results for each feature and combination

method. Regarding the single-feature results, different features turned out to be useful
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Table 6.25. Document ranking performance (MRR) for the single-feature and com-
bination methods. 10-fold cross-validation was used for grid search and RankSVM
(SVM).

Collection title content tag time topic path type concept Grid SVM
Person 1 0.392 0.480 0.063 0.296 0.229 0.274 0.183 0.264 0.500 0.494
Person 2 0.334 0.564 0.268 0.372 0.184 0.137 0.092 0.187 0.592 0.478
CS/Top1 0.074 0.097 0.065 0.114 0.140 0.098 0.070 0.140 0.156 0.098
CS/Top5 0.081 0.138 0.05 0.114 0.151 0.132 0.062 0.129 0.150 0.133

for each collection. Specifically, we found that co-occurrence is the most effective

feature in Person 1’s and Person 2’s collection, while occurrence and tag was the best

in CS/Top5 and CS/Top1, respectively. From this we can conclude that there are

considerable variations in the value of each feature depending on the collection and

the click behavior.

Among the combination methods, RankSVM performed the best for all collections

except for Person 2’s, where Grid Search performed the best. We also observe that,

although different features perform the best for each collection, combination methods

are consistently better than single-feature methods. From these results, we can draw

the conclusion that feature combination is beneficial for finding concept similarity.

As far as the document ranking task is concerned, Table 6.25 shows a slightly

different trend. Term vector similarity using the content field is far more important

than any other features in the case of Person 1 and Person 2. This makes intuitive

sense because documents typically contain more textual content. This results in more

accurate term vectors and subsequently better term vector similarity estimates. The

best feature for the CS collection was topic similarity.

In the case of combination methods, grid search performed better than any feature

used by itself, while RankSVM was not as effective as it was in concept ranking.

Although the performance margin between combination and single-features methods

is small, given that it is hard to know which feature would work the best a priori, we

can conclude that the feature combination should be used for generating document

suggestions as well.
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Figure 6.4. Learning curve for concept and document ranking on CS/Top1 col-
lection. The circles and crosses denote the ranking quality of RankSVM and grid
search (respectively) when trained using the user’s own click data, whereas solid and
dashed lines represent the performance of RankSVM and grid search (respectively)
when trained on the click data of the five users.

6.4.3.2 Analysis of the Performance

To analyze the performance of learning methods using different sets of click data,

we compared the learning curve for the CS/Top1 collection trained using the user’s

own click data versus the aggregate click data from five users. Figure 6.4 shows the

result we obtained. Circles and crosses represent the learning curve based on the

user’s own clicks, whereas solid and dashed lines represent the learning curve based

on aggregated clicks of the five users.

We can see that training with the user’s own click data results in better perfor-

mance, even if we have much smaller number of clicks. From this result, we can

conclude that different users have different preferences, which the suggested learning

method effectively adapts to.

Another trend is that RankSVM shows better average performance and a steeper

learning curve in the case of the concept ranking task, whereas the opposite is observed

in the document ranking task. We hypothesize that the diversity among top-ranked
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documents led to the generation of noisy pairwise constraints from the click data.

Upon further inspection, we found that the average number of skipped items was

higher in the document similarity experiment compared to the concept similarity

experiment.

6.5 Summary

In this chapter, we presented the experimental results for the methods we proposed

in previous chapters. We first described the test collections we built, and evaluated the

validity of queries we generated. We found that field-based query generation improves

document-based query generation in terms of both predictive and replicative validity.

We then presented experimental results for the retrieval methods we proposed

earlier—field-based search models and associative browsing model. For field-based

search models, our evaluation on several structured document collections showed that

the field-based retrieval methods (PRM-S and FRM) were significantly more effective

than the baselines. In analyzing the results, we found that the quality of the field

relevance estimation is largely responsible for the improvement.

Using the simulated test collections (pseudo-desktop and CS), we demonstrated

that improving the type prediction method can produce significantly better final

retrieval performance. We also found that the suggested type prediction methods

show performance superior to competitive baselines in both collections we tested.

Finally, our results show that the combination-based type prediction method can

improve type prediction performance compared to existing methods.

Our evaluation for the associative browsing model based on both a user study

and simulation suggests that the model is useful for the known-item finding task,

especially when the concept space is used for browsing in addition to the document

space. We showed that the effectiveness of each association type varies according to

the collection and the user. Furthermore, our experimental results in three collections
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show that the combination of features significantly improves the quality of suggestions

for browsing.
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CHAPTER 7

CONCLUSIONS

In this chapter, we conclude this thesis. We first summarize the main results

from the thesis, and then conclude the thesis by discussing its implications in a broad

context. Finally, we discuss the limitations of current work and present possible

extensions for the future.

7.1 Summary

This thesis propose a general retrieval and evaluation framework for personal

information retrieval (PIR), with the goal of building a foundation for future research

in the area. The techniques introduced in this thesis also improve the state-of-the-art

in the relevant areas of research. We briefly summarize the main contributions and

experimental results from this thesis.

For the field-based search method, we showed the value of exploiting field-level

evidence for both retrieval and type-prediction methods. Motivated from the observa-

tion that users associate each part of the query with different structural elements, we

put forth the idea of field relevance and related estimation techniques by extending

the notion of relevance for structured document retrieval.

Table 7.1. Retrieval performance for three collections used. FRMO is based on the
oracle estimate of field relevance using relevant documents.

DQL BM25F MFLM PRM-S FRM FRMO

TREC 0.542 0.597 0.601 0.624 0.668 0.794
IMDB 0.408 0.524 0.612 0.637 0.657 0.704
Monster 0.429 0.279 0.460 0.542 0.558 0.716
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Table 7.2. Accuracy of type prediction for best-performing individual type predic-
tion methods and combination methods in the CS collection.

Method CQL FQL Grid RankSVM MultiSVM

Accuracy 0.708 0.743 0.747 0.758 0.808

Table 7.3. The ratio of the sessions where the simulated user model chose to use
browsing and the choice of browsing led to a successful retrieval, in comparison to
the user study results.

Evaluation Total Browsing Successful
type used

Simulation 63,260 9,410 (14.8%) 3,957 (42.0%)
User Study 290 42 (14.5%) 15 (35.7%)

Experiments in several standard test collections show that the retrieval methods

based on field relevance improve retrieval performance over strong baselines (Table

7.1). We also show how field relevance can be estimated based on known relevant

document (the rightmost column of Table 7.1). We introduced a type prediction

method combining field-level evidences, as well as a type prediction method based on

the combination of evidence (Table 7.2).

For the associative browsing model, we introduced a technique for automati-

cally building associations between documents and concepts, where the association

strengths are calculated by combining features. We showed how associative browsing

can complement keyword search based on both user studies and simulation experi-

ments (Table 7.3). Finally, we demonstrated that the proposed learning framework

for generating browsing suggestions can improve the quality of suggestions based on

a small amount of click feedback from the user (Tables 7.4 and 7.5).

To address the evaluation challenge, we introduced a set of simulation techniques

by which we can create all the components necessary for PIR evaluation. The tech-

Table 7.4. Concept ranking performance (MRR) for the single-feature and combi-
nation methods in the CS collection.

Collection title content tag time string cooc occur Grid SVM
CS/Top1 0.142 0.179 0.289 0.235 0.107 0.191 0.195 0.255 0.433

CS/Top5 0.184 0.127 0.170 0.155 0.100 0.158 0.222 0.301 0.340
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Table 7.5. Document ranking performance (MRR) for the single-feature and com-
bination methods in the CS collection.

Collection title content tag time topic path type concept Grid SVM
CS/Top1 0.074 0.097 0.065 0.114 0.140 0.098 0.070 0.140 0.156 0.098
CS/Top5 0.081 0.138 0.05 0.114 0.151 0.132 0.062 0.129 0.150 0.133

niques exploit the task (known-item finding) and the collection (structured docu-

ments) characteristics of PIR. We also proposed a three-stage evaluation framework

where simulated evaluation techniques can be sensibly combined with the traditional

user study methods.

7.2 Conclusions

Ever since the idea of the personal computer was popularized, personal infor-

mation management has been one of major functions of a computing system. As we

have more and more personal information in electronic form, the problem of retrieving

personal information has become increasingly important. The landscape of personal

information management is still rapidly evolving with the changing paradigms of com-

puting and the introduction of new technologies, which only increases the challenges.

Starting from the nature of personal information and how users access their own

information, this thesis presented a combination of retrieval and evaluation techniques

upon which future research can build. Actually, it was these characteristics of the

domain that enabled the development of many techniques introduced here. Here we

revisit the characteristics of PIR, and how they relate to this thesis.

The existence of multiple collections and document structure in the form of type-

specific metadata became the foundation for the design of field-based retrieval model

and type prediction methods. The observations that users tend to orienteer when

they find information in their own collection motivated the development of the as-

sociative browsing model. Focusing on the most common task in PIR (known-item
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finding) allowed us to build evaluation techniques by simulating the query generation

procedure and designing a game-based user study.

While this focus on PIR contributes the future development of the domain, many

of the proposed techniques have application well beyond the area of PIR. Structured

data and documents are becoming increasingly common, yet it is unlikely that such

structure would be found in users’ queries, since users would not have the ability

or incentive to write queries with complex structure. Therefore, the general idea of

mapping the user’s query into different structural elements of the collection would be

applicable in various areas of IR.

Specifically, while we evaluated the field-based retrieval models in flat fielded

documents, the proposed notion of field relevance can be applicable to other scenarios.

For instance, in XML retrieval where elements form a hierarchical relationship, we

can define the mapping between the user’s query terms and structural elements of

each collection document. The problem of keyword search over databases also deals

with relations composed of multiple attributes, each of which can be a target of a

user’s query terms.

The combination of multiple information access methods is also a common situa-

tion found in many domains. For instance, e-commerce websites such as Amazon.com

provide search, faceted filtering and associative browsing for its users. However, the

evaluation of IR in such an information seeking environment where multiple methods

are combined remains a challenge. In this regard, the evaluation framework described

here where we dealt with the combination of search and browsing based on simulated

user models and game-based studies can be illuminating for future investigation.

Finally, while we considered the privacy of data as a concern for PIM research,

in many other areas of research, getting the collection and user interaction data is a

significant challenge. Building simulated test collections, as we showed in the pseudo-

desktop and CS collections, can be a solution here. Many of the proposed techniques
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for test collection generation and user study would be applicable to other areas of

research.

7.3 Future Work

As many of proposed techniques represent the first step in a new direction, this

thesis has several limitations.

First, while focusing on the development of a general retrieval model, this thesis

leave out many details of implementation. We did not deal with the retrieval features

of any particular document type, as well as the considerations of nor did we fully

consider efficiency and user interface issues.

From the evaluation perspective, we avoided instrumentation-based user studies

that require the implementation of systems, by focusing on various forms of simulated

evaluation. While we showed the validity of our evaluation based on some statistical

techniques and by direct comparison of simulation results with corresponding user

study results, some aspects of PIR would still require the evaluation based on actual

users and their tasks. In what follows, we describe possible extensions of the proposed

techniques.

• Improving the Field Relevance Model: We proposed field-based retrieval

models with improved performance, and our analysis showed that the quality

of per-term field weight estimation was a main source of the improvement.

However, our results also showed that there still exists a wide gap between the

current performance and what is possible, which leaves opportunities for future

research. Also, the relationship of field weighting and the underlying retrieval

model should be investigated for the proposed field weighting scheme to be

applied to other retrieval frameworks.
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• Fluid Combination of Search and Browsing within a Session The pro-

posed retrieval model assumes a separation between search and browsing. In

other words, at any given point, the retrieval is based on either keyword query

or an item. However, we can envision a hybrid interaction model where search

and browsing are combined in a single session. As an example, the user can type

in a search keyword and choose a document in the same page, which functions

as a context for retrieving more documents.

• Incorporating Context for Generating Suggestions: Given that browsing

naturally leads to several sequences of interaction, one possibility of future work

is to improve the suggested browsing model by incorporating the user’s session

context. The proposed model is stateless in that it makes suggestions only

based on what the user is currently looking at. By exploiting user session

contexts available in the form of browsing history, we believe that the quality

of suggestions can be improved, given that a single document or a concept may

not be discriminative enough to generate effective results.

• Cognitive Model of Query Generation: Existing query generation models

make many assumptions about the user’s query generation behavior, some of

which do not necessarily correspond to what a human user might do. As a

solution, we can build a more elaborate model of a user’s memory, and then

develop a query generation procedure based on the model. Such model would

be capable of simulating many features of human memory, such as forgetting

and confusion, which are important aspects of query formulation.

• Naturalistic User Study: We evaluated the proposed retrieval model based

on several variants of simulation methods. While the evaluation results demon-

strate the effectiveness of the proposed methods, more conclusive claim may be

made from a naturalistic user study where a PIR system is deployed to users’
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machines and used for an extended period. Such an evaluation will reveal the

characteristics of the retrieval methods in the context of actual user’s informa-

tion and tasks.
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Seeding simulated queries with user-study data for personal search evaluation.
In Proceedings of the 34th international ACM SIGIR conference on Research and

development in Information Retrieval (New York, NY, USA, 2011), SIGIR ’11,
ACM, pp. 25–34.

[34] Elsweiler, David, and Ruthven, Ian. Towards task-based personal information
management evaluations. In SIGIR ’07 (New York, NY, USA, 2007), ACM,
pp. 23–30.

[35] Greenberg, Saul, and Buxton, Bill. Usability evaluation considered harmful
(some of the time). In Proceeding of the SIGCHI conference (New York, NY,
USA, 2008), CHI ’08, ACM, pp. 111–120.

[36] Guo, Lin, Shao, Feng, Botev, Chavdar, and Shanmugasundaram, Jayavel. Xrank:
Ranked keyword search over xml documents. In SIGMOD Conference (2003),
pp. 16–27.

[37] Harvey, Morgan, and Elsweiler, David. Exploring query patterns in email search.
In Proceedings of the 34th European conference on Advances in Information Re-

trieval (Berlin, Heidelberg, 2012), ECIR’12, Springer-Verlag, pp. 25–36.

131



[38] Hauff, Claudia, and Houben, Geert-Jan. Cognitive processes in query generation.
In ICTIR (2011), pp. 176–187.

[39] Hristidis, Vagelis, and Papakonstantinou, Yannis. Discover: Keyword search in
relational databases. In VLDB (2002), pp. 670–681.

[40] Joachims, Thorsten. Optimizing search engines using clickthrough data. In KDD

’02 (New York, NY, USA, 2002), ACM, pp. 133–142.

[41] Jones, William. The Future of Personal Information Management. Synthesis
Lectures on Information Concepts,Retrieval, and Services. Morgan & Claypool
Press, 2012.

[42] Jones, William, and Teevan, Jaime. Personal Information Management. Uni-
versity of Washington Press, 2008.

[43] Kaplan, Craig, Fenwick, Justine, and Chen, James. Adaptive hypertext naviga-
tion based on user goals and context. User Modeling and User-Adapted Interac-

tion 3, 3 (1993), 193–220.

[44] Karger, David R., Bakshi, Karun, Huynh, David, Quan, Dennis, and Sinha,
Vineet. Haystack: A general-purpose information management tool for end users
based on semistructured data. In CIDR (2005), pp. 13–26.

[45] Kim, Jin Young, Bakalov, Anton, Smith, David A., and Croft, W. Bruce. Build-
ing a semantic representation for personal information. In In Proceedings of

CIKM’2010, Toronto, Ontario, Canada (2010).

[46] Kim, Jin Young, and Croft, W. Bruce. Retrieval experiments using pseudo-
desktop collections. In in Proceedings of CIKM’2009, Hong Kong, China (2009),
pp. 1297–1306.

[47] Kim, Jin Young, and Croft, W. Bruce. Ranking using multiple document types
in desktop search. In In Proceedings of SIGIR ’10 (New York, NY, USA, 2010),
ACM, pp. 50–57.

[48] Kim, Jin Young, and Croft, W. Bruce. A field relevance model for structured
document retrieval. In Proceedings of ECIR ’12: 34th European Conference on
Information Retrieval.

[49] Kim, Jin Young, Croft, W. Bruce, and Smith, David A. Evaluating associative
browsing model for by simulations. In In Proceedings of HCIR’2011 Workshop,

Mountain View, CA, USA (2011).

[50] Kim, Jin Young, Croft, W. Bruce, Smith, David A., and Bakalov, Anton. Eval-
uating associative browsing model for personal information. In In Proceedings of

CIKM’2011, Glasgow, Scotland, UK (2011).

132



[51] Kim, Jin Young, Xue, Xiaobing, and Croft, W. Bruce. A probabilistic retrieval
model for semi-structured data. In In Proceedings of ECIR ’09 (2009), Springer,
pp. 228–239.

[52] Lavrenko, Victor. A generative theory of relevance. PhD thesis, 2004.
AAI3152722.

[53] Lavrenko, Victor, and Croft, W. Bruce. Relevance based language models. SIGIR
’01, ACM, pp. 120–127.

[54] Lavrenko, Victor, Yi, Xing, and Allan, James. Information retrieval on empty
fields. In HLT-NAACL (2007), pp. 89–96.

[55] Lee, Chia-Jung, Croft, W. Bruce, and Kim, Jin Young. Evaluating search in
personal social media collections. In Proceedings of WSDM ’12, 5th ACM Inter-
national Conference on Web Search and Data Mining.

[56] Leuski, Anton, and Allan, James. Interactive information retrieval using cluster-
ing and spatial proximity. User Modeling and User-Adapted Interaction 14, 2-3
(June 2004), 259–288.

[57] Lin, Jimmy, and Smucker, Mark D. How do users find things with pubmed?:
towards automatic utility evaluation with user simulations. In SIGIR ’08 (New
York, NY, USA, 2008), SIGIR ’08, ACM, pp. 19–26.

[58] Lu, Chang-Tien, Shukla, Manu, Subramanya, Siri H., and Wu, Yamin. Perfor-
mance evaluation of desktop search engines. In IRI (2007), pp. 110–115.

[59] Lucarella, Dario. A model for hypertext-based information retrieval. 81–94.
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