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ABSTRACT

INFORMATION RETRIEVAL
WITH QUERY HYPERGRAPHS

SEPTEMBER 2012

MICHAEL BENDERSKY

B.Sc., TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY

M.Sc., TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Current information retrieval models are optimized for retrieval with short key-

word queries. In contrast, in this dissertation we focus on longer, verbose queries

with more complex structure that are becoming more common in both mobile and

web search. To this end, we propose an expressive query representation formalism

based on query hypergraphs.

Unlike the existing query representations, query hypergraphs model the depen-

dencies between arbitrary concepts in the query, rather than dependencies between

single query terms. Query hypergraphs are parameterized by importance weights,

which are assigned to concepts and concept dependencies in the query hypergraph,

based on their contribution to the overall retrieval effectiveness.

Query hypergraphs are not limited to modeling the explicit query structure. Ac-

cordingly, we develop two methods for query expansion using query hypergraphs. In
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these methods, the expansion concepts in the query hypergraph may come either from

the retrieval corpus alone or from a combination of multiple information sources such

as Wikipedia or the anchor text extracted from a large-scale web corpus.

We empirically demonstrate that query hypergraphs are consistently and signifi-

cantly more effective than many of the current state-of-the-art retrieval methods, as

demonstrated by the experiments on newswire and web corpora. Query hypergraphs

improve the retrieval performance for all query types, and, in particular, they exhibit

the highest effectiveness gains for verbose queries.
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CHAPTER 1

INTRODUCTION

Typically, queries in information retrieval applications are represented as bags-of-

words. That is, query terms are assumed to be independent from one another. While

simplistic, the bag-of-words assumption has been useful for creating many successful

retrieval models in the past. However, it becomes less realistic as information retrieval

becomes more integrated in applications beyond web search, and user search queries

become more diverse, complex and verbose.

In web search, the most well-known information retrieval application today, users

commonly use short keyword queries that have very simple grammatical structures.

Keyword queries usually contain no more than three terms (Bendersky and Croft

2009) most of which are proper nouns (Barr et al. 2008), and are frequently used

for navigational purposes, i.e., to find a particular web page (Broder 2002).

In contrast, verbose queries, which are the focus of this dissertation, are long, lin-

guistically rich expressions of user information needs. In many cases, verbose queries

are expressed as natural language questions or sentences and contain multiple parts

of speech, complex grammatical structures, and redundancies. Oftentimes, verbose

queries can take forms that are very different from the typical wh-questions. There-

fore, a robust combination of diverse retrieval strategies is required to improve search

with verbose search queries.

To illustrate this point, consider the different types of queries shown in Table 1.1.

As can be seen in Table 1.1, the short keyword queries can be usually resolved by

a URL match (query (a)) or an exact phrase match (query (b)). The longer, more
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User Query Retrieval Strategy
(a) facebook URL match
⇒ site:facebook.com

(b) old bangkok inn Exact phrase match
⇒ "old bangkok inn"

(c) What should I bring when traveling
to Bolivia?

Redundancy elimination

⇒ travel to bolivia

(d) the in laws with michael douglas Entity detection
⇒ "The In-Laws" + "Michael Douglas"

(e) budget accommodation in Bangkok
that is near the subway station

Long-range dependency detection,
query expansion

⇒ "guesthouse near subway" + Bangkok

Table 1.1. Examples of different types of user queries, the retrieval strategies re-
quired in response to these queries and possible query formulations.

verbose queries in Table 1.1 may require additional linguistic processing and more

complex retrieval strategies such as removal of the redundant linguistic structures

(query (c)), entity detection (query (d)), long-range dependency detection and query

expansion using related terms (query (e)).

These complex retrieval strategies pose many interesting challenges to the stan-

dard web search engines. To address these challenges, a number of what can be

broadly referred to as semantic search engines have gained popularity. Examples

include Powerset, WolframAlpha, Hakia, DeepDyve, True Knowledge and, most re-

cently, IBM’s DeepQA system (Ferrucci et al. 2010) to name just a few. While

some of these semantic search engines have been successful within a restricted do-

main (for instance, the DeepQA system defeating the champions of the Jeopardy TV

show), an end-to-end solution that handles equally well all types of queries ranging

from keyword queries to verbose natural language queries, and works on the scale of

the entire web is yet to emerge.

Thus, developing effective and robust retrieval models that can handle both key-

word queries and verbose queries is important both from the scientific and the com-
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mercial perspectives. This is further strengthened by the fact that the share of verbose

queries in search engine traffic has been growing steadily in the last few years.

For instance, according to the recent Hitwise press releases, the number of queries

with 5+ words in the web search traffic grew by 10% in 20081. It grew by an additional

5%, in 20092. According to Hitwise3, as of September 2011, the share of 5+ word

queries in the entire query traffic is 18%.

In addition, while the verbose queries may still constitute a small portion of web

search query traffic, they are very common for complex informational search activi-

ties such as search in Question Answering archives, patent search, enterprise search,

academic search, and legal search. They are also proving to be important for voice-

activated search on mobile devices (Feng et al. 2011).

Finally, verbose queries are highly pertinent in the emerging social search medium,

since social networks such as Facebook, Twitter, Quora and others, allow users to

directly communicate their information needs to other users. The types of questions

that people ask in social networks are very different to the ones used in search engines,

being longer and more grammatically complex (Jeon et al. 2005; Horowitz and

Kamvar 2010; Hecht et al. 2012). Whether it is to route the question to the most

suitable person, or to find an answer to a similar question, it is important to achieve

a better understanding of verbose queries used in the social search applications.

To overcome the unrealistic simplicity of the commonly used bag-of-words retrieval

models, researchers started to investigate term dependencies in search queries. This

led to the creation of successful retrieval models, especially for large-scale web collec-

tions (Metzler and Croft 2005; Mishne and de Rijke 2005; Bai et al. 2008).

1http://www.hitwise.com/us/press-center/press-releases/google-searches-jan-09/

2http://www.hitwise.com/us/press-center/press-releases/google-searches-jan-10/

3http://www.experian.com/hitwise/press-release-google-share-of-searches-sept-2011.

html
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Motivated by these models, in this dissertation, we present a formal query represen-

tation and retrieval framework that goes beyond term dependencies. This framework

facilitates modeling of more complex linguistic phenomena in verbose queries by in-

tegrating weighted evidence from multiple query representations.

Our framework represents a query as a hypergraph of concept structures. We

demonstrate that this query representation relaxes some of the independence assump-

tions made in previous work, and supports the development of complex and realistic

query representations. These representations can be applied to improve the retrieval

effectiveness of a search engine, especially for verbose queries, which – as shown in

Table 1.1 – exhibit more complex linguistic structures than short keyword queries.

As we show in this dissertation, the query hypergraph representation leads to the

development of several retrieval models that incorporate concept weighting, query ex-

pansion and concept dependencies. These retrieval models are significantly more effec-

tive than the current state-of-the-art retrieval models, especially for verbose queries.

The rest of this chapter is organized as follows. In Section 1.1 we illustrate some

of challenges of information retrieval with verbose queries by analyzing user behavior

reflected in a commercial search engine query log. Motivated by the challenges that

the verbose queries pose to information retrieval systems, in Section 1.2 we introduce

the hierarchical query representation that may help in improving the effectiveness of

these queries and show how this query representation can be modeled using query

hypergraphs. In Section 1.3 we state the main contributions of this dissertation.

Finally, in Section 1.4 we provide the outline of the remainder of the dissertation.

1.1 The Challenge of Verbose Queries

While the general query representation framework described in this dissertation

is robust enough to handle multiple query types, a major motivation of this work is

information retrieval with verbose queries. In this section, we explain this motiva-
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tion, and analyze a commercial search engine query log to demonstrate some of the

challenges that the verbose queries present to the current search engines.

1.1.1 MSN Search Query Log

For our analysis we use an excerpt from an MSN Search query log. This query log

includes around 15 million queries and user click data associated with these queries,

sampled over a period of one month in 20064.

User activity recorded in commercial search engine logs has proved to be a valuable

resource for the researchers in the fields of information retrieval, data mining, machine

learning and natural language processing. Large volumes of user queries and the

corresponding click data in the search logs were successfully leveraged for providing

an insight into the searcher behavior (Jones and Klinkner 2008; Mei and Church

2008; Downey et al. 2008).

In this section, we examine a relatively small yet significant segment of verbose

queries in the query log. Most queries in the search log are short. Query length

(measured by the number of query terms) follows a power-law distribution, with the

verbose queries in the tail. In fact the average number of terms per query in the MSN

query log is 2.4, and queries with less than five terms account for 90.3% of the total

queries.

Due to our focus on the verbose queries in this dissertation, we divide the queries

in the log into two (unequally sized) main types: short and verbose. For simplicity,

the division is based on the number of terms in the query.

• Short keyword queries are queries with less than five terms.

• Verbose queries are queries with five or more terms.

4See http://research.microsoft.com/en-us/um/people/nickcr/wscd09/ for more
details about this dataset.
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Total Queries: 14, 921, 286
Verbose Queries : 1, 423, 664
Type Avg. Length Count % of Verbose

Operators (OP) 6.05 78,331 5.50
Query operators
site:dev.pipestone.com ((Good For A Laugh))

bristol, pa AND senior center

Composite (CO) 5.67 910,103 63.93
Queries that can be composed using the short queries in the query log
T.I. the rapper web site

merryhill schools a noble learning community

Noun Phrases (NC NO) 5.77 209,906 14.74
Noun phrase non-composite queries
Hp pavilion 503n sound drive

lessons about children in the bible

Verb Phrases (NC VE) 6.35 118,736 8.34
Verb phrase non-composite queries
detect a leak in the pool

eye hard to open upon waking in the morning

Questions (QE) 6.75 106,587 7.49
Wh-questions
What is the source of ozone?

how to feed meat chickens to prevent leg problems

Table 1.2. Summary and examples of verbose query types (spelling and punctuation
of the original queries is preserved).

All the short queries are assigned to a type SH, while the verbose queries are divided

between five mutually exclusive types, which are summarized in Table 1.2.

Verbose queries are much less frequent than the short ones and therefore have a

much sparser associated click data. Click data is crucial for predicting which results

will be relevant for a particular query (Joachims 2002) and therefore, it is not sur-

prising that the relevance of the results presented to the users is lower for the verbose

queries when compared to the short keyword queries, as demonstrated by the click

data analysis we present in the next section.
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Figure 1.1. Boxplot of the distribution of the average click positions per query for
different query types.

1.1.2 Click Data Analysis

The types of queries in Table 1.2 are derived from the structure of the query

strings. However, although the proposed taxonomy is reasonable from a syntacti-

cal point of view, we are more interested in its utility for analyzing the quality of

retrieval with verbose queries. Accordingly, in this section we explore whether the

users interaction with the search engine differs for each of the query types.

Figure 1.1 shows the distribution of the average click position for the six types

of queries (the short queries and the five types of the verbose queries) in a random

sample of 10,000 queries per query type. Note that a larger value in the boxplot

translates into a lower position of the click in the ranked list. For example, for the

short queries (type SH) the median of the average click positions is the first result

in the ranked list, while for the question queries (type QE), the median is the third

result.
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Figure 1.1 demonstrates that (a) on average, users tend to click lower in the result

list for the verbose queries than for the short ones, and (b) there are differences in

user click behavior between the different types of verbose queries. Specifically for

the verbose queries, operators, composite queries and noun phrases are more effective

than verb phrases and questions.

Overall, as Figure 1.1 shows, capturing the linguistic structure of search queries

is important for the purpose of information retrieval. The most significant drops

in click position occur for the queries with complex grammatical structures such as

questions and verb phrases. This demonstrates that the user click behavior is strongly

dependent on the query structure.

1.2 Complex Query Representations

As the analysis in the previous section shows, there is a need to develop robust

and effective query representation methods that go beyond bag-of-words and term

dependencies that are commonly used in web search (Metzler and Croft 2005;

Mishne and de Rijke 2005; Brin and Page 1998) in order to improve the retrieval

effectiveness of verbose queries. The existing simple query representations are often

insufficient to accurately model the complex grammatical structure of verbose queries

such as questions or verbal phrases. Therefore, in this section, we introduce an outline

of a comprehensive query representation method, query hypergraphs, that is proposed

in this dissertation.

To motivate the query hypergraph representation proposed in this dissertation,

we describe five desiderata for verbose query representation that are based on the

query analysis in the previous sections.

Desideratum I: Hierarchical Query Structure A simple method for inducing

query structure is to assign each query term to a single concept. That is, a standard
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bag-of-words query representation is a special case of query structure. Other methods

that may be used to induce structure over a query include (but are not limited

to) sequential dependence modeling (a concept corresponds to a bigram) (Metzler

and Croft 2005), noun phrase chunking (a concept corresponds to a noun phrase)

(Bendersky and Croft 2008), query segmentation (Bergsma and Wang 2007),

and dependence parsing (a concept corresponds to a sub-tree of a parse) (Park and

Croft 2010). To integrate these multiple ways of query structure induction, an

effective query representation method must support a hierarchical combination of

query structures. First, we assume that we can induce a set of linguistic structures

from the surface form of the query. Each of these structures can then be decomposed

into atomic units, or concepts (terms, bigrams, noun phrases, etc.).

Desideratum II: Concept Weighting Some of the query concepts may be more

important than others. For instance, in the query (c) in Table 1.1 (What to bring

when traveling to Bolivia? ), the verb bring is less important than the verb travel, and

both of them are less important than the destination in question, Bolivia. Therefore,

an effective query representation must support assignment of weights to individual

concepts derived from the query (terms, bigrams, noun phrases, etc.). These weights

should reflect the importance of the concept for retrieving the most relevant docu-

ments in response to the query.

Desideratum III: Query Expansion In some cases, the query itself does not

always contain all the concepts necessary for finding all the relevant documents. For

instance, in the case of query (e) in Table 1.1, adding terms such as motel or guest-

house to the original query (budget accommodation in Bangkok that is near the subway

station) may help to retrieve more pages about budget accommodations in Bangkok.

Since such query expansion with related terms or concepts is a common practice in

many information retrieval applications (Lavrenko and Croft 2003; Metzler
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and Croft 2007a; Xu and Croft 1996), an effective query representation must be

flexible enough to accommodate structures that do not explicitly occur in the query.

Desideratum IV: Concept Dependencies As mentioned above, term depen-

dencies alone are not always enough to capture the linguistic richness of verbose

queries. For instance, in the case of query (e) in Table 1.1, we would like to model

not only the dependence between the terms budget and accommodation, but also a

dependency between the phrase budget accommodation and the terms Bangkok and

subway. Therefore, an effective query representations must support dependencies be-

tween arbitrary concepts, rather than single terms, i.e., high-order term dependencies.

Desideratum V: Parameter Optimization Since the ultimate goal of query rep-

resentation is information retrieval, query representation must be an integral part of

the retrieval model. In other words, the parameters that govern the query representa-

tion must also govern the retrieval model. In such a way, optimizing the parameters

of the query representation will directly result in a better retrieval performance.

Figure 1.2 shows a schematic drawing of the query representation as defined by

these desiderata. A set of structures is first induced over both the explicit query

concepts and the expansion terms related to the query. Then, concepts in each

structure are weighted based on their importance for the retrieval performance (in

the case of Figure 1.2, C is the most important concept). The arcs in Figure 1.2

represent a concept dependency between the term C and the phrases AB and BC.

In the following chapters, we fully formalize this query representation and the

corresponding desiderata using the query hypergraph representation. As we show in

this dissertation, query hypergraphs can be used to instantiate a variety of query

representations and retrieval models that are significantly more expressive and effec-

tive than the current state-of-the-art retrieval techniques. While the main motivation
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Figure 1.2. A schematic drawing of an hierarchical query representation for query
containing three explicit terms A, B, and C and two expansion terms E and F . The
query representation conforms to the five desiderata in Section 1.2. Circles represent
query concepts. Concept weights are marked by the circle size.

of our work is verbose queries, we show that query hypergraphs are robust enough

to handle a variety of query types, ranging from short keyword queries to verbose

natural language queries.

1.3 Contributions

In this section, we summarize the main contributions of this dissertation.

(a) We propose a novel query representation formalism called query hypergraphs.

Unlike the existing query representations, query hypergraphs may be used to

not only model the dependencies between single query terms, but also the de-

pendencies between arbitrary concepts in the query. Therefore, query hyper-

graph representation is among the first publicly available methods that model

higher-order term dependencies in the query.
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(b) We propose a novel method for query hypergraph parameterization that enables

the assignment of weights to concepts and concept dependencies in the query

hypergraph according to their contribution to the overall retrieval effectiveness

of the query.

(c) In addition to using the query hypergraphs in order to represent the explicit

query structure, we also propose a simple method to model query expansion

using query hypergraphs. The expansion concepts in the expanded query hy-

pergraph may come from a variety of information sources, including the target

retrieval corpus or an external document collection such as Wikipedia.

(d) We propose a pipeline optimization procedure to estimate the parameters of the

complex query hypergraphs that incorporate multiple concept dependencies or

expansion concepts. Query hypergraph parameters are optimized to achieve

the maximal retrieval effectiveness and thus overcome the metric divergence

problem.

(e) We empirically demonstrate the effectiveness of the proposed query hypergraphs

for document retrieval. Query hypergraphs are significantly more effective (as

measured by a number of standard information retrieval metrics) than any of

the current state-of-the-art retrieval methods. These effectiveness gains are

consistent across both newswire and web corpora.

(f) The main focus of this dissertation is on improving the retrieval performance

of verbose queries. We empirically demonstrate that, for verbose queries, query

hypergraphs exhibit consistently high effectiveness gains compared to the other

methods. However, query hypergraph representation is robust enough to handle

both short and verbose queries, and it is significantly more effective than any

of the existing retrieval methods for both query types.
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1.4 Dissertation Outline

The remainder of this dissertation is organized as follows.

(a) In Chapter 2, we survey the related work, as well as provide some informa-

tion about the Indri query language, which is used to instantiate the query

hypergraph representations in the experiments in this dissertation.

(b) In Chapter 3, we provide a formal definition of query hypergraphs, their in-

duction process and their use for document retrieval. In addition, we describe

the pipeline optimization procedure to estimate the parameters of the complex

query hypergraphs.

(c) In Chapter 4, we describe the constituents of TREC corpora used for empirical

evaluation of our retrieval methods. In addition, we describe the evaluation

metrics used in this dissertation.

(d) In Chapter 5, we present parameterized concept weighting, a method to assign

weights to the concepts in the query based on their contribution to overall query

effectiveness. In particular, we show that we can model a weighted variant of

a sequential dependence model, state-of-the-art retrieval model (Metzler and

Croft 2005), using a query hypergraph representation.

(e) In Chapter 6, we present parameterized query expansion, which goes beyond

assigning weights to explicit query concepts. Parameterized query expansion

allows the assignment of related concepts from the retrieval corpus to the orig-

inal query, and parameterized weights to these concepts. This results in a fully

weighted query representation using a hypergraph that integrates both explicit

and expansion concepts.

(f) In Chapter 7, we present multiple source expansion, which enables query expan-

sion using multiple information sources. Multiple source expansion is especially
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helpful in situations when the retrieval corpus does not yield sufficiently relevant

expansion concepts. Multiple source expansion results in a fully weighted query

representation using a hypergraph that integrates both explicit query concepts

and expansion concepts from multiple information sources.

(g) In Chapter 8, we present parameterized concept dependencies, a novel technique

to model dependencies between arbitrary concepts in the query. Parameterized

concept dependencies are also weighted by their contribution to the overall

query effectiveness. These concept dependencies can be integrated in various

query representations as hyperedges in a query hypergraph.

(h) In Chapter 9, we summarize the findings of this dissertations and propose some

promising directions for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we survey the related work on bag-of-words retrieval models (Sec-

tion 2.1), retrieval models that incorporate term dependencies (Section 2.2) and re-

trieval models that incorporate supervised term and concept weighting (Section 2.3).

In addition, in Section 2.4, we introduce the Indri query language (Strohman et al.

2004), which is used in our experiments to instantiate the proposed query represen-

tations.

2.1 Bag-of-Words Models

Traditionally, formal retrieval models treat queries as bags of words. Examples of

such retrieval models include (among many others): vector space model (Salton

et al. 1975), BIR model (Robertson and Sparck Jones 1988), BM25 model

(Robertson andWalker 1994), query likelihood model (Ponte andCroft 1998),

and divergence from randomness model (Amati and Van Rijsbergen 2002).

The bag-of-words models assume that queries have a very simple linguistic struc-

ture: concepts are query terms, and there are no dependencies between the different

concepts. This is a very limiting assumption, which to a large degree ignores the lin-

guistic structure of the search query. However, until recently there was little evidence

that going beyond bag of words representations consistently improves the effectiveness

of the existing retrieval methods (Salton and Buckley 1988).

Term weighting plays an important role in the bag of words models. The term

weighting in these models is based on either the inverse document frequency (IDF)
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of the term (Salton et al. 1975; Robertson and Walker 1994; Salton and

Buckley 1988; Zobel and Moffat 1998), or the inverse collection frequency (ICF)

of the term (Zhai and Lafferty 2004; Amati and Van Rijsbergen 2002; Kwok

1990; Smucker and Allan 2006). There are many variants of term weighting

schemes used in different retrieval models. For instance, Zobel and Moffat (1998)

show ten examples of term weighting schemes based on IDF alone. Of these weighting

schemes, “none was shown to be consistently valuable across all of the experimental

domains” (Zobel and Moffat 1998).

One of the goals of this dissertation is to address the issue of query term and

concept weighting in a principled manner. In this dissertation we propose a concept

weight optimization based on the optimization of some retrieval metric of interest

(e.g., average precision or normalized discounted cumulative gain – refer to Section 4.2

for more details on these metrics).

2.2 Modeling Term Dependencies

Recently, there has been a resurgence of interest in retrieval models that go beyond

bags of words. This resurgence was mainly motivated by gains in retrieval effective-

ness, which were observed on large-scale web collections, when term dependencies

were incorporated into the retrieval model (Metzler and Croft 2005; Mishne

and de Rijke 2005; Bai et al. 2008; Peng et al. 2007; Svore et al. 2010).

Most of these term dependence models, however, take several simplifying assump-

tions. First, they only consider a single term dependence type (or a handful of types).

For instance, Metzler and Croft (2005) consider dependencies between adjacent

query term pairs, Tao and Zhai (2007) consider all the term pairs in the query, Nal-

lapati and Allan (2002) consider term dependencies in a maximum spanning tree

of the query (based on term co-occurrence), and Gao et al. (2005) consider syntactic
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phrases. In contrast, we propose a retrieval model that allows combining concepts,

rather than terms, and which can model various dependence types.

Second, most of these models do not explicitly assign weights to different term

dependencies (Metzler and Croft 2005; Peng et al. 2007; Tao and Zhai 2007).

This can be especially detrimental for models that have an exponential number of

term dependencies (for instance, the full dependence model proposed by Metzler

and Croft (2005)).

Third, the majority of the term dependence models consider only first-order term

dependencies. In other words, these models only consider the dependencies between

the terms, and disregard the dependencies between the term dependencies (modeled

as concepts in our query representation). This creates an over-simplified model of the

query structure, especially for verbose natural language queries.

Query hypergraphs, which we describe in this dissertation, address the three issues

above. First, they allow us to incorporate multiple concept types into the ranking

function through the hierarchy of structures (see Figure 1.2). Second, they provide a

principled way to weight both the structures and the concepts within the structures,

such that the retrieval performance is optimized. Finally, they allow modeling higher-

order dependencies between arbitrary concepts, rather than just single terms.

To the best of our knowledge, there is very little prior work on retrieval with higher-

order term dependencies (i.e., dependencies between arbitrary concepts rather than

terms). One notable exception is an early work on generalized term dependencies

by Yu et al. (1983), which derives higher-order dependencies from pairwise term

dependencies. However, the model proposed by Yu et al. (1983) is infeasible for

large scale collections, since it requires an explicit computation of the probability of

relevance for each individual query term, as well as pairs and triples of query terms.

A more recent retrieval model that attempts to incorporate higher-order term

dependencies is the Full Dependence (FD) variant of the Markov random field model
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proposed by Metzler and Croft (2005). The FD model, however, is only able

to capture dependencies between multiple terms, rather than multiple concepts. For

instance, it can model a dependency between the terms in the triple (dogs, law,

enforcement), but it cannot model a dependency between the pair of concepts (dogs,

“law enforcement”).

2.3 Supervised Weighting in Information Retrieval

In the last several years, information retrieval researchers started to explore super-

vised models for term and concept weighting. These models facilitate more effective

weighting schemes than the traditional TF-IDF weighting (Salton et al. 1975), es-

pecially for more verbose queries.

Bendersky and Croft (2008) treated the problem of concept weighting as a

classification problem, in which noun phrase concepts in the query are labeled as

either key or non-key concepts. Then, an AdaBoost classifier is trained to classify

each noun phrase concept into either a key or a non-key class using a combination

of statistical and syntactic features. The probability that the concept belongs to a

key class is then used for concept weighting in the query. Bendersky and Croft

(2008) show that using as few as two weighted noun phrase concepts (in addition

to the original query) can significantly improve the retrieval performance for verbose

natural language queries.

Similarly to Bendersky and Croft (2008), Zhao and Callan (2010) use the

probability of term necessity as a weighting mechanism for the query terms. The

necessity of term t is defined as the probability of a term t occurring in documents

relevant to a given query Q, i.e. P (t|R), where R is the set of relevant documents for

query Q. The advantage of term necessity weighting over the key concept weighting

is that it leverages the existing relevance labels, and does not require an additional
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labeling of key and non-key concepts. However, it has an important disadvantage of

operating on the level of single terms rather than arbitrary concepts.

To integrate the term weighting more tightly into the retrieval framework, Lease

(Lease et al. 2009; Lease 2009) proposed a RegressionRank method, which utilizes

expected mean average precision as a target metric. The RegressionRank weight-

ing approach showed significant retrieval effectiveness improvements when integrated

either in a bag of words model (Lease et al. 2009) and a term dependency model

(Lease 2009).

Cao et al. (2008) extend these approaches beyond the terms that explicitly occur

in the query. Their method applies term weighting to the expansion terms as well.

They train a weighting model that distinguishes between good and bad expansion

terms and show that their weighting scheme outperforms a standard query expansion

mechanisms such as relevance models (Lavrenko and Croft 2003).

Query hypergraphs, which are the focus of this dissertation, present an important

advance compared to these existing term and concept weighting models. First, query

hypergraphs present a principled approach for weighting arbitrary concept types,

rather than just a single concept type such as a term or a noun phrase. Second, they

directly integrate the concept weighting into the retrieval model. Third, they are

able to simultaneously optimize both explicit query concept weights and expansion

concept weights. Finally, they are able to assign weight to concept dependencies as

well as to single concepts.

2.4 Indri Query Language

The query hypergraph representation described in this dissertation can be viewed

as a special case of structured query representation. Therefore, in this section, we

describe the Indri query language (Strohman et al. 2004) which facilitates structural
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query representation and is used to instantiate all the query hypergraph variants

discussed in this dissertation.

The Indri query language and its underlying retrieval model (Strohman et al.

2004) combine the language modeling (Ponte and Croft 1998) and the inference

network (Turtle and Croft 1991) approaches to information retrieval. The result-

ing model allows rich, structured query representations to be evaluated using language

modeling estimates within the inference network.

While the Indri query language is flexible enough to enable very rich query repre-

sentations, it lacks a formal mechanism for automatically converting a given keyword

query into its structured representation. Therefore, the users are either required to

explicitly provide their queries in a structured form, or to rely on a search engine to

automatically convert their keyword queries into structured Indri queries.

The query hypergraph representation can be viewed as an instance of the latter

option. Given an arbitrary keyword query, the query concepts and the dependencies

between them are automatically identified and weighted using the query hypergraph

induction process described in Chapter 3 of this dissertation. Then, the hypergraph

representation is translated into the Indri query language using the language con-

structs described next. These queries are executed by the Indri search engine, and

the results are presented to the user.

2.4.1 Concept Matching

Concepts are the basic building blocks of Indri queries. Concepts can come in

the form of single terms, ordered or unordered phrases, synonyms, and wildcard

expressions, among others. In addition, Indri allows the user to specify if a concept

should appear within a certain field, or if it should be scored within a given context.

In this section, we describe the subset of Indri concept matching operators used in

this dissertation.
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• t1 — matches stemmed and normalized term t1.

• #N(t1t2 . . .) — ordered window operator. Concept matches the document if

terms in the window appear ordered, with at most N − 1 terms between each

term.

• #uwN(t1t2 . . .) — unordered window operator. Concept matches the document

if terms in the window must appear within window of length N in any order.

While Indri allows the user to define a variety of concept scoring functions, in

this dissertation we use its default scoring function, query likelihood with Dirichlet

smoothing (Zhai and Lafferty 2004)

f(κ,D) = log
tf(κ,D) + µ

tf(κ,C)
|C|

|D|+ µ
, (2.1)

where κ is a concept defined by one of the operators described above; tf(κ,D) and

tf(κ, C) are the number of concept occurrences in the document D and the collection,

respectively; µ is a free parameter (set by default to 2,500); and |D| is the length of

the document D.

2.4.2 Belief Operators

Belief operators in the Indri query language allow the user to combine beliefs

about concepts (i.e., concept scores). Indri provides both unweighted and weighted

belief operators. With weighted operators, one can assign varying weights to certain

expressions, to control the impact of each query concept on the final score. While

Indri supports a variety of belief operators, in this section we describe only the subset

pertinent to this dissertation.

• #combine(κ1 . . . κn) — arithmetic mean of the concept scores of κ1, . . . , κn

#combine(κ1 . . . κn) =

∑

κ∈[κ1,...,κn]
f(κ,D)

n
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• #weight(w1κ1 . . . wnκn) — weighted arithmetic mean of the concept scores

κ1, . . . , κn

#weight(w1κ1 . . . wnκn) =
∑

κi∈[κ1,...,κn]

wi
∑

iwi

f(κi, D)

• #max(κ1 . . . κn) — maximum the concept scores of κ1, . . . , κn

#max(κ1 . . . κn) = max (f(κ1, D) . . . f(κn, D)).

For each of the above belief operators, concepts κ1, . . . , κn are defined using one

of the concept matching operators, and f(κ,D) is defined in Equation 2.1.

2.4.3 Extents

Indri queries can be used to score and retrieve not only full documents, but doc-

ument parts, or extents, as well. These extents can be fields in the document (for

instance document title or anchor text), or document passages. To specify an extent

retrieval, a field name in the square brackets is added to the belief operator.

For instance, for instantiating the #weight operator over fixed length passages of

length L, with overlap O, one simply has to define an Indri query

#weight[passageL:O](w1κ1 . . . wnκn).

2.4.4 Combining Beliefs

The Indri query language is defined recursively. This enables further combination

of the outcomes of the different belief operators.

For instance, to assign a score to a document based on the score of the entire

document combined with the score of its highest scoring passage, one can use the

following Indri query
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#combine (

#max(#weight[passageL:O](w1κ1 . . . wnκn))

#weight(w1κ1 . . . wnκn)

) .

2.5 Summary

In this chapter, we summarized the background and the previous work related to

this dissertation. We described the unsupervised bag-of-words retrieval models (Sec-

tion 2.1), as well as retrieval models that incorporate term dependencies (Section 2.2)

and supervised term weighting (Section 2.3). Finally, in Section 2.4 we described the

Indri structured query language, which is used for the experiments in this dissertation.

In the next chapter, we introduce query hypergraphs, a formal query representa-

tion framework that underlies all the retrieval models described in this dissertation.

We fully describe the process of query hypergraph induction, query hypergraph pa-

rameterization and parameter optimization, and ranking with query hypergraphs.
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CHAPTER 3

QUERY HYPERGRAPHS

In this chapter, we describe the proposed general theoretical framework for query

representation and information retrieval based on query hypergraphs. We start the

chapter with Section 3.1, in which we formally describe the process of representing

search queries using a hypergraph structure. Then, in Section 3.2, we derive a ranking

principle based on the query hypergraph representation. In Section 3.3 we describe the

process of query hypergraph structure induction, and in Section 3.4 we describe the

query hypergraph parameterization. In Section 3.5 we show how the parameters of the

query hypergraphs are optimized. Finally, we conclude this chapter with Section 3.6.

3.1 Query Representation with Hypergraphs

In this chapter, we base the query representation on two primary modeling prin-

ciples, which were first illustrated in Figure 1.2 in Chapter 1.

Principle 1 Given a query Q we can model it using a set of linguistic structures

ΣQ = {σ1, . . . ,σn}.

The structures in the set ΣQ are both complete and disjoint. The completeness of

the structure implies that it can be used as an autonomous query representation.

The disjointness of the structures means that there is no overlap in the linguistic

phenomena modeled by the different structures. In other words, each structure groups

together concepts of a single type (e.g., terms, bigrams, noun phrases, etc.).
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Structure σ Concepts {κ|κ ∈ σ}
Terms [“members”, “rock”, “group”, “nirvana”]
Bigrams [“members rock”, “rock group”, “group nirvana”]
Segments [“members”, “rock group”, “nirvana”]
Named Entities [“nirvana”]
Dependence [“members nirvana”, “rock group”]
Corpus Expansion [“music”, “alternative”, “punk”, “bootlegs”]
Wikipedia Expansion [“grohl”, “foo fighters”, “album”, “cobain”]

Table 3.1. Examples of the possible structures and the concepts they might contain
for a search query “members rock group nirvana”.

international art crime "art crime"D

Terms Phrases

({international},D) ({art},D) ({crime},D) ({"art crime"},D)

({international, art, crime, "art crime"},D)

Figure 3.1. Example of a hypergraph representation for the query “international
art crime”.

Principle 2 Within each structure arbitrary term dependencies can be modeled as

concepts. In other words, each structure σi ∈ ΣQ is represented by a set of concepts

σi , {κ
1
i , κ

2
i , . . .}.

Each such concept is considered to be an atomic unit for the purpose of query rep-

resentation. Note that in contrast to the view usually taken in information science

(Stock 2010) we do not require the concepts to carry a semantic meaning. Instead,

we take an information retrieval centric approach and define a concept as an arbitrary

syntactic expression that can be matched within a retrieved document.

In addition, for convenience, we adopt the notation
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κ
Q ,

n
∪

i=1

σi,

to refer to the union of all the query concepts, regardless of their respective structures.

While the hierarchical query representation defined by the two principles described

above is conceptually simple, it is flexible enough to allow a wide range of specific

instantiations, and can model a large variety of linguistic structures that are often

encountered in natural language processing and information retrieval applications.

Table 3.1 illustrates how this query representation models a variety of concept types

that can be extracted given the query “members rock group nirvana”, including terms,

bigrams, query segments, named entities, dependencies and expansion terms.

Note that the hierarchical query representation is not limited to the explicit query

terms alone. For instance, query expansion, a well known information retrieval tech-

nique, can also be modeled as a linguistic structure. The goal of query expansion

is to enrich the original user query with additional related terms or concepts. This

technique has been shown to be highly successful in various information retrieval

applications (see, for instance, Chapter 6 in Croft et al. (2009)). In the proposed

query representation, query expansion is achieved by simply embedding the expanded

concepts as a structure.

As an example, consider the query “members rock group nirvana” in Table 3.1.

In addition to the structures based on the explicit query concepts that appear in

Table 3.1, two structures based on expansion concepts are included as well. The first of

these structures is based on the concepts that are expanded from the retrieval corpus,

while the other structure is based on the concepts extracted from the Wikipedia.

Expansion concepts from an additional source such as Wikipedia may prove beneficial,

since they provide a complementary perspective on the query intent (e.g., compare

the expansion concepts derived from the retrieval corpus to the concepts derived from

the Wikipedia in Table 3.1).
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Given the hierarchical query representation defined by the set of structures ΣQ,

our primary interest is in using it for modeling the relationship between a query Q

and some document D in the corpus. Specifically, given a query representation ΣQ

and a document D, our aim is to construct a hypergraph H(ΣQ, D)1.

Most generally, a hypergraph is a generalization of a graph. A hypergraph H is

represented by a tuple ⟨V,E⟩ such that

• V is a set of elements or vertices,

• E is a set of non-empty subsets of V , called hyperedges.

In other words, the set E ⊆ PS(V ) of hyperedges is a subset of the powerset of V

(Kaufmann et al. 2009).

Specifically for the scenario of document retrieval, we define the hypergraph H

over the document D and the set of query concepts κQ as

V , κ
Q ∪ {D}

E , {(k, D) : k ∈ PS(κQ)}. (3.1)

Figure 3.1 demonstrates an example of a hypergraph H for the search query

“international art crime”. In this particular example, we have two structures. The

first structure contains the query terms denoted i, a, and c, respectively. The second

structure contains a single phrase, which we denote ac. Over these three concepts,

we define a set of four hyperedges – one hyperedge connecting document D and each

of the concepts, and one hyperedge connecting D and all of the concepts.

1For conciseness, we use the abbreviation H , H(ΣQ, D) in the remainder of this dissertation.
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Formally, for the hypergarph H in Figure 3.1, the vertices and the hyperedges are

defined as follows

VFig. 2 = {D, i, a, c, ac}

EFig. 2 = {({i}, D), ({a}, D), ({c}, D), ({i, a, c, ac}, D)}.

Note that this hypergraph configuration is just one possible choice. In fact, any

subset of query terms can serve as a query concept, and similarly, any subset of query

concepts can serve as a hyperdge, as shown by Equation 3.1.

3.2 Ranking with Query Hypergraphs

In the previous section, we defined the query representation using a hypergraph

H = ⟨V,E⟩. In this section, we define a global function over this hypergraph, which

assigns a relevance score to document D in response to query Q. This relevance score

is used to rank the documents in the retrieval corpus.

A factor graph, a form of hypergraph representation which is often used in statis-

tical machine learning (Bishop 2006), associates a factor φe with a hyperedge e ∈ E.

Therefore, most generally, a relevance score of document D in response to query Q

represented by a hypergraph H is given by

sc(Q,D) ,
∏

e∈E

φe(ke, D)
rank
=

∑

e∈E

log(φe(ke, D)). (3.2)

It is interesting to note that Equation 3.2 is reminiscent of the recently proposed

log-linear retrieval models, including the Markov random field model (Metzler and

Croft 2005) and the linear discriminant model (Gao et al. 2005). Similarly to these

models, Equation 3.2 scores a document using a log-linear combination of factors

φe(ke, D).
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However, an important difference from these retrieval models is related to the fact

that the factors φe(ke, D) in Equation 3.2 are defined over concept sets, rather than

single concepts, as in previous work (Gao et al. 2005; Metzler and Croft 2005).

This definition enables the modeling of higher-order dependencies between query

terms. Higher-order term dependencies cannot be easily modeled by the existing

retrieval models that incorporate term dependencies (Gao et al. 2005; Lv and Zhai

2009; Metzler and Croft 2005; Park et al. 2011; Tao and Zhai 2007).

Thus far, we have provided only the most abstract definition of the query repre-

sentation and ranking with query hypergraphs. In the remainder of this chapter, we

provide an in-depth discussion of the query hypergraph induction and a more detailed

derivation of the ranking function and its parameters.

First, in Section 3.3, we fully specify the structures, concepts, and hyperedges in

the query hypergraph H. Then, in Section 3.4, we examine the different parameteri-

zations of the ranking function based the query hypergraph H. Finally, in Section 3.5

we describe the procedures for ranking function parameter optimization.

3.3 Query Hypergraph Induction

3.3.1 Hypergraph Structures

There are many potential ways in which we could define the set of structures ΣQ in

the query hypergraph. In this dissertation, we focus on three types of structures that

are successfully used in previous work on modeling term dependencies for information

retrieval (Bendersky et al. 2010; Bendersky et al. 2011; Metzler and Croft

2005; Peng et al. 2007). We leave a further exploration of other possible hypergraph

structures to future work.

(1) QT-structure. The query term (QT) structure contains the individual query words

ti as concepts. Terms are the most commonly used concepts in information retrieval,

both in bag-of-words models (Ponte and Croft 1998; Robertson and Walker
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1994) and models that incorporate term dependencies (Metzler and Croft 2005;

Mishne and de Rijke 2005; Gao et al. 2005).

(2) PH-structure. The phrase (PH) structure contains the combinations of query terms

that are matched as exact phrases in the document. Exact phrase matching has

often been used for improving the performance of retrieval methods (Fagan 1987;

Xu and Croft 1996). Most recently, it has been shown that using query bigrams

for exact phrase matching is a simple and efficient method for improving the retrieval

performance in large scale web collections (Bendersky et al. 2010; Bendersky

et al. 2011; Metzler and Croft 2005; Mishne and de Rijke 2005; Peng et al.

2007). Following this finding, we define the concepts in the PH-structure as adjacent

query word pairs (titi+1).

(3) PR-structure. The PR-structure differs from the PH-structure in the way the con-

cepts in the structure are matched in the document. In order to match the document,

the individual terms in a concept in the PR-structure may occur in any order within

a window of fixed length. In this dissertation, we fix the window size to 4|t| terms,

where |t| is the number of terms in the concept. This approach follows the definition

of term proximity as defined by Metzler and Croft (2005).

3.3.2 Hyperedges

As described in Section 3.1, a näıve induction approach may result in an exponen-

tial number of hyperedges in a query hypergraph. This is due to the fact that each

hyperedge e can model a dependency between an arbitrary subset of concepts. Thus,

theoretically, we could define E , PS(κQ). Such an approach would be detrimental

for two reasons.

First, for efficiency reasons, the näıve approach would result in a significantly

increased query latency, especially for verbose natural language queries which are the
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focus of this dissertation. This is due to the fact that the cardinality of the set of the

hyperedges E would grow exponentially with the size of the query.

Second, modeling dependencies between each subset of the query concepts could

be detrimental for the retrieval effectiveness as well. Most of these dependencies are

redundant, and some might actually hurt the retrieval effectiveness by introducing

intents that are not aligned with the true query intent. For instance, consider a

dependency between the concepts “crime” and “international crime” for the query

“international art crime” in Figure 3.1. Such a dependency could be beneficial for a

broad query about international crime, but not for a query focused on art crime.

Therefore, in this dissertation we limit our attention to only two types of hyper-

edges. Both of these types of hyperedges have an intuitive appeal from the information

retrieval perspective.

(1) Local hyperedges. For each concept κ ∈ κ
Q, we define a hyperedge ({κ}, D).

This local edge2 represents the contribution of the concept κ to the total document

relevance score, regardless of the other query concepts. As we show in Section 3.3.3.1,

the factors defined over the local edges are akin to the functions that are usually

employed in the existing log-linear retrieval models (Gao et al. 2005; Metzler and

Croft 2005).

(2) Global hyperedge. In addition to the local edges, we define a single global

hyperedge (κQ, D) over the entire set of query concepts κ
Q. This global hyperedge

provides the evidence about the contribution of each concept κ ∈ κ
Q given its depen-

dency on the entire set of query concepts κQ. Unlike in the case of local edges, the

factors defined over the global hyperedge cannot be easily expressed using the existing

2From now on, we refer to the local hyperedges simply as edges, since they are defined
over a vertex pair, rather than an arbitrary set of vertices.
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log-linear retrieval models, and draw inspiration from prior work on passage-based

retrieval. These factors are described in Section 3.3.3.2.

Figure 3.1 provides a simple example of these two types of hyperedges. The hyper-

edges at the bottom of the hypergraph in Figure 3.1 are the local edges, while the

hyperedge at the top is the global hyperedge.

3.3.3 Factors φe(ke, D)

Following the hyperedge induction process described in Section 3.3.2, in this sec-

tion we define two types of factors. The local factors – corresponding to the local

edges – are defined in Section 3.3.3.1; the global factor – corresponding to the global

hyperedge – is defined in Section 3.3.3.2.

Both local and global factors incorporate a matching function f(κ,X), which

assigns a score to the occurrences of the concept κ in a text fragment X. This

function may take various forms, however in information retrieval applications it is

commonly a monotonic function, i.e., its value increases with the number of times

concept κ matches document D.

As a matching function, following some previous work on log-linear retrieval mod-

els (Bendersky et al. 2010; Gao et al. 2005; Metzler and Croft 2005), we use a

log of the language modeling estimate for concept κ with Dirichlet smoothing (Zhai

and Lafferty 2004), i.e.

f(κ,X) , log
tf(κ,X) + µ

tf(κ,C)
|C|

µ+ |X|
, (3.3)

where tf(κ,X) and tf(κ, C) are the number of occurrences of the concept κ in the text

fragment and the collection, respectively; µ is a free parameter; |X| is the number of

terms in X, and |C| is the total number of terms in the collection.

32



We use this language modeling estimate as a concept matching function since

it is convenient and efficient to compute, and exhibits state-of-the-art retrieval per-

formance in other concept-based retrieval models (Bendersky et al. 2010; Gao

et al. 2005; Metzler and Croft 2005). However, other commonly used matching

functions (such as BM25 (Robertson and Walker 1994) or DFR (Amati and

Van Rijsbergen 2002)) can be substituted in Equation 3.3 without loss of general-

ity.

3.3.3.1 Local Factors

The local factors are defined over the local edges ({κ}, D). A local factor assigns a

score to the occurrences of concept κ in the document D, regardless of the other query

concepts. Therefore, a local factor is defined similarly to the previously proposed log-

linear retrieval models (Bendersky et al. 2010; Gao et al. 2005; Metzler and

Croft 2005)

φ({κ}, D) , exp
(

λ(κ)f(κ,D)
)

, (3.4)

where λ(κ) is an importance weight assigned to the concept κ, and f(κ,D) is a

matching function between the concept κ and the document D.

Using the Indri query language (described in Section 2.4), all the local factors can

be combined into a structured Indri query of the following form

#weight(w1κ1 . . . wnκn).

3.3.3.2 The Global Factor

The global hyperedge (κQ, D) described in Section 3.3.2, represents a dependency

between the entire set of query concepts. In this section, we present a global factor

that is defined over this hyperedge.
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...Simi Valley, West Covina and Los Angeles police de-
partments were among the first law enforcement agen-
cies to receive money through the forfeiture program....a
narcotics-sniffing dog in a Simi Valley police investiga-
tion...led to the largest seizure of cocaine ever by author-
ities from Ventura County...dog’s efforts are expected to
yield a substantial amount of money...for the 21-officer
department...

Figure 3.2. Excerpt a relevant document retrieved in response to the query “Pro-
vide information on the use of dogs worldwide for law enforcement purposes”. Non-
stopword query terms are marked in boldface.

A common way to estimate a dependency between query terms is using a mea-

sure of their proximity in a retrieved document (Cummins and O’Riordan 2009;

Lv and Zhai 2009; Metzler and Croft 2005; Tao and Zhai 2007). Analogously,

we may simply choose to estimate a dependency between query concepts using sim-

ilar proximity measures. However, there are two notable difficulties that impede an

application of this approach to concept dependency.

First, the existing term proximity measures usually capture close, sentence-level,

co-occurrences of the query terms in a retrieved document (Metzler and Croft

2005; Peng et al. 2007; Tao and Zhai 2007). The dependency range is much longer

for concept dependencies. For instance, in the example in Figure 3.2, the concepts

dog and law enforcement do not ever appear in the same sentence. However, the

dependency between them is revealed when examining their co-occurrences in a larger

text passage.

Second, since concepts can be arbitrarily complex syntactic expressions, the prob-

ability of observing a concept co-occurrence is much lower than the probability of

observing a term co-occurrence, even in large collections. For instance, most docu-

ments in the retrieved list for the query in Figure 3.2, do not contain both of the

concepts dog and law enforcement in a context of a single passage.
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Therefore, instead of estimating the dependency between query concepts using

the standard proximity measures, we leverage a long history of research on passage

retrieval (Bendersky and Kurland 2008; Cai et al. 2004; Callan 1994; Liu and

Croft 2004; Kaszkiel and Zobel 1997; Wang and Si 2008; Wilkinson 1994)

for the derivation of the global factor.

In the passage retrieval literature, a document is often segmented into overlap-

ping passages of text of fixed size (Kaszkiel and Zobel 1997; Kaszkiel and Zobel

2001). The document is then scored using some combination of document-level and

passage-level scores. One of the most successful and frequently-used score combina-

tions is the Max-Psg combination, which uses the highest scoring passage to assign a

score to the document (Bendersky and Kurland 2008; Cai et al. 2004; Kaszkiel

and Zobel 1997; Liu and Croft 2002; Wilkinson 1994).

Similarly to the Max-Psg retrieval model, we define the global factor using a

passage π, which receives the highest score among the set ΠD of passages extracted

from the document D. Formally,

φ(κQ, D) , exp
(

max
π∈ΠD

∑

κ∈κQ

λ(κ,κQ)f(κ, π)
)

, (3.5)

where λ(κ,κQ) is the importance weight of the concept κ in the context of the entire

set of query concepts κQ, and f (κ,π) is a matching function between the concept κ

and a passage π ∈ ΠD.

Intuitively, the global factor in Equation 3.5 assigns a higher relevance score to

a document that contains many important concepts in the confines of a single pas-

sage. Note that the importance weight λ(κ,κQ) of a concept in the global factor is

determined not only by the concept itself – as in the case of the importance weights

λ(κ,D) in the local factors – but also by the concepts that co-occur together with

the concept in the passage π.
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Using the Indri query language (described in Section 2.4), the global factor can

be formulated using a structured Indri query of the following form

#max(#weight[passageL:O](w1κ1 . . . wnκn)).

3.4 Query Hypergraph Parameterization

In the previous section, we introduced two types of concept weights that pa-

rameterize the ranking function in Equation 3.2. First, there are the independent

importance weights λ(κ) that parameterize the local factors (see Equation 3.4). Sec-

ond, there are the importance weights λ(κ,κQ) that assign weight to a concept, while

taking into account the rest of the concepts in the query (see Equation 3.5).

In this section, we consider two possible parameterization schemes for these con-

cept weights. In Section 3.4.1, we consider parameterization by structure. Conversely,

in Section 3.4.2, we examine parameterization by concept.

3.4.1 Parameterization By Structure

A simple way to parameterize the importance weights λ(κ) and λ(κ,κQ), is to

make the assumption that the weights of all the concepts in the same structure are

tied. Formally:

∀κi, κj ∈ σ : λ(κi) = λ(κj) = λ(σ)

∀κi, κj ∈ σ : λ(κi,κ
Q) = λ(κj,κ

Q) = λ(σ,ΣQ)

This assumption has the benefit of significantly reducing the number of free pa-

rameters in the retrieval model, thereby greatly simplifying the estimation process.

Due to its simplicity, parameterization by structure is commonly used in the log-linear

retrieval models (Gao et al. 2005; Metzler and Croft 2005; Peng et al. 2007).
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Feature Type Description

CF(κ) Endogenous Frequency of κ in the collection
DF(κ) Endogenous Document frequency of κ in the collection

GF(κ) Exogenous Frequency of κ in Google n-grams
WF(κ) Exogenous Frequency of κ in Wikipedia titles
QF(κ) Exogenous Frequency of κ in a search log

AP(κ) Constant A priori constant weight (=1)

Table 3.2. Concept importance features Φ.

Using parameterization by structure and the definitions of local and global factors

in Section 3.3.3, we can explicitly rewrite the ranking function in Equation 3.2 as

sc(Q,D) =
∑

σ∈ΣQ

λ(σ)
∑

κ∈σ

f(κ,D) +

+ max
π∈ΠD

∑

σ∈ΣQ

λ(σ,ΣQ)
∑

κ∈σ

f(κ, π). (3.6)

3.4.2 Parameterization By Concept

The main drawback of parameterization by structure is the fact that it implies

that all the concepts in the same structure are equally important for expressing the

query intent. This implication is not always true, especially for more verbose, gra-

matically complex queries, which may benefit from assigning varying concept weights

(Bendersky and Croft 2008; Bendersky et al. 2010; Lease et al. 2009).

Therefore, we may wish to remove the restriction imposed in the previous sec-

tion, and parameterize the concept weights based on the concepts themselves rather

than their respective structures. Assigning a single weight to each concept is clearly

infeasible, since the number of concepts is exponential in the size of the vocabulary.

Therefore, we take a parameterization approach and represent each concept using a

combination of importance features, Φ, described in Table 3.2. These importance fea-

tures are based on concept frequencies, and can be efficiently computed and cached,

even for large-scale collections.
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The features in the Table 3.2 are computed for each concept κ (as defined in

Section 3.3.1) and are independent of a specific document. This fact allows us to

combine the statistics of the underlying document corpus with the statistics of various

external data sources to achieve a potentially more accurate weighting. Accordingly,

we divide the features used for concept importance weighting into two main types,

based on the type of information they are using.

The first type, the endogenous, or collection-dependent, features are akin to stan-

dard weights used in information retrieval. They are based on collection frequency

counts and document frequency counts calculated over a particular document corpus

on which the retrieval is performed.

The second type, the exogenous, or collection-independent, features are calculated

over an array of external data sources. The use of such sources was found to be bene-

ficial for information retrieval models in previous work (Bai et al. 2008; Bendersky

and Croft 2008; Lease et al. 2009). Some of these data sources provide better cov-

erage of terms, and can be used for smoothing sparse concept frequencies calculated

over smaller document collections. Others provide more focused sources of informa-

tion for determining concept importance. In this dissertation, we use three external

data sources: (i) a large collection of web n-grams, (ii) a sample of a query log, and

(iii) Wikipedia. Although there are numerous additional data sources that could be

potentially used, we intentionally limit our attention to these three sources as they

are available for research purposes, and can be easily used to reproduce the reported

results.

The first source, Google n-grams corpus, is available from the Linguistic Data

Consortium catalog (Brants and Franz 2006). The Google n-grams corpus contains

the frequency counts of English n-grams generated from approximately 1 trillion word

tokens of text from publicly accessible Web pages. We expect these counts to provide a
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more accurate frequency estimator, especially for smaller corpora, where some concept

frequencies may be underestimated due to the collection size.

In addition, we use a large sample of a query log consisting of approximately 15

million queries, which is available as a part of Microsoft 2006 RFP dataset3. We use

this data source to estimate how often a concept occurs in user queries. Intuitively,

we assume a positive correlation between an importance of a concept for retrieval and

the frequency with which it occurs in queries formulated by the search engine users.

Finally, our third external data source is a snapshot of Wikipedia article titles4.

Due to the large volume and the high diversity of topics covered by Wikipedia (as of

April 2011, there are close to 8.5 million articles in English alone), we assume that

the important concepts will often appear as (a part of) article titles in Wikipedia.

Table 3.2 details the statistics used for computing the concept importance features.

The statistics presented in the Table 3.2 are computed for each of the concepts defined

by the query structures (QT,PH and PR – see Section 3.3.1 for details). Using the set of

importance features Φ based on these statistics, we can parameterize the importance

weights λ(κ) and λ(κ,κQ) as

∀κ ∈ σ : λ(κ) =
∑

ϕ∈Φ

λ(ϕ,σ)ϕ(κ)

∀κ ∈ σ : λ(κ,κQ) =
∑

ϕ∈Φ

λ(ϕ,σ,ΣQ)ϕ(κ).

Note that this concept weight parameterization requires us to compute parameters

based on importance features and structures, rather than the concepts themselves.

This approach makes the parameterization by concept approach feasible, since we

are no longer required to compute an individual parameter for each concept in the

3See http://research.microsoft.com/en-us/um/people/nickcr/wscd09/ for more
details about this dataset.

4Available at: http://download.wikimedia.org/enwiki/
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vocabulary. Instead, the cardinality of the free parameters vector Λ (which includes

both the local factor parameters λ(κ) and the global factor parameters λ(κ,κQ)) is

reduced down to

|Λ| = 2|ΣQ||Φ| = 2 · 3 · 6 = 36.

Using the importance features for concept weight parameterization, we can ex-

plicitly rewrite the ranking function in Equation 3.2 as

sc(Q,D) =
∑

σ∈ΣQ

∑

ϕ∈Φ

λ(ϕ,σ)
∑

κ∈σ

ϕ(κ)f(κ,D) +

+ max
π∈ΠD

∑

σ∈ΣQ

∑

ϕ∈Φ

λ(ϕ,σ,ΣQ)
∑

κ∈σ

ϕ(κ)f(κ, π).

(3.7)

3.5 Parameter Optimization

In this section, we describe the optimization of the parameters used in the query

hypergraph ranking function. First, in Section 3.5.1, we discuss the general learning-

to-rank paradigm for information retrieval, and how it differs from the query hyper-

graph parameterization. Then, in Section 3.5.2, we describe coordinate ascent – a

simple yet effective parameter optimization technique used as a base procedure in the

query hypergraph parameter optimization. Finally, in Section 3.5.3, we describe the

pipeline approach to query hypergraph parameter optimization.

3.5.1 Learning To Rank

Learning to rank (LTR) has recently become a popular paradigm for optimizing

the ranking of documents in information retrieval, especially in the setting of web

search (Li 2011; Burges et al. 2005; Joachims 2002). Most generally, the goal of

the standard LTR techniques is to learn an optimally relevant ranking of the document

set D in response to a set of training queries Q.
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Formally, for each query Qi ∈ Q, a list of documents {D1
i , . . . , D

n
i } ∈ D is derived

(e.g., using a standard retrieval technique such as BM25). Then, each query-document

pair ⟨Qi, D
j
i ⟩ is associated with a relevance label Lj

i and with a feature vector Ψj
i .

This feature vector commonly includes features based on the query-document text

match scores, link-based features and query-based features (Li 2011).

Once each query-document pair ⟨Qi, D
j
i ⟩ is associated with a feature vector Ψj

i

and a relevance label Lj
i , a variety of machine learning techniques including support

vector machines (Joachims 2002), ordinal regression (Li et al. 2007), neural networks

(Burges et al. 2005), boosting (Xu and Li 2007) and bagging (Mohan et al. 2011)

can be employed to learn the scoring function sc(Qi, D
j
i ) that is trained to optimize

some rank-based criteria (for instance, normalized discounted cumulative gain or av-

erage precision) such that the documents with higher relevance labels appear higher

in the ranked list.

The LTR setting bears a close similarity to the problem of parameter optimization

in query hypergraphs. In both the LTR and the query hypergraph settings, the

parameters of the scoring function are learned such that the relevance of the resulting

ranking is optimized.

However, the main difference between the LTR and the query hypergraph settings

lies in the choice of the parameterization of the ranking function. In the LTR setting,

the scoring function is parameterized based on the features defined over a query-

document pair. In contrast, in the setting of the query hypergraph, the scoring

function is parameterized based on the features defined over arbitrary subsets of

query concepts (see Section 3.2).

It is interesting to note that the LTR and the query hypergraph optimization

approaches are complementary. While the former is focused on optimizing the ranking

of a given set of documents D, the latter is focused on deriving this document set
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CoordinateAscent(I,Λ0)

1: Λ← Λ0

2: M← eval(I,Λ)
3: change← TRUE
4: i← 0
5: while change and i ≤ MAX ITER do
6: for λ ∈ Λ do
7: λ′ ← optimize(λ, I,Λ)
8: if λ′ ̸= λ then
9: update(Λ, λ′)
10: M← eval(I,Λ)
11: change← TRUE
12: else
13: change← FALSE
14: end if
15: end for
16: i← i + 1
17: end while
18: return ⟨M,Λ⟩

Figure 3.3. The outline of the coordinate ascent optimization algorithm.

(e.g., for replacing a standard retrieval technique such as BM25 for constructing this

document set).

LTR approaches are generally classified into pointwise, pairwise and listwise (Li

2011). In this dissertation, we use a simple listwise approach which directly optimizes

a metric of interest and is effective and efficient, especially for a small set of parameters

as described in this work. This technique is called coordinate ascent and was first

proposed by Metzler and Croft (2007b). It is further described in Section 3.5.2.

Finally, in some cases the hypergraph optimization can be done in several stages,

in a pipeline fashion where each optimization step feeds into the next stages. This

process is further detailed in Section 3.5.3.
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3.5.2 Coordinate Ascent

Note that the local and the global factors in Equation 3.4 and Equation 3.5,

respectively, are linear with respect to the set of free parameters Λ, which is based

either on structures (see Section 3.4.1) or concepts (see Section 3.4.2). Therefore, as

a base algorithm for optimizing the scoring function parameters, we make use of the

coordinate ascent (CA) algorithm proposed by Metzler and Croft (2007b).

Figure 3.3 outlines the CA algorithm. As an input, the CA algorithm receives (a)

a set of fixed parameters I (which may be an empty set) that will not be updated

by the algorithm, and (b) an initial parameter set Λ0, which may be initialized to

random values or set based on some prior knowledge.

The CA algorithm iteratively optimizes a target metricM (in our case a retrieval

effectiveness metric such as average precision). This optimization is done by per-

forming a one-dimensional optimization using a line search for each of the parameters

λ ∈ Λ (represented by the optimize function in Figure 3.3), while holding the other

parameters fixed. This cycle of one-dimensional optimizations is repeated as long as

both of the two conditions are met (the while loop in Figure 3.3):

(a) At least one of the parameters λ is changed during the cycle (i.e., the metric

M improved during the cycle as determined by the eval function).

(b) Number of iterations did not reach the maximum number of allowed iterations

MAX ITER.

While CA is a simple optimization algorithm, it has several advantages that justify

its use for query hypergraph optimization. First, it directly optimizes the retrieval

metric, therefore sidestepping the metric divergence problem, which is common in

the other learning to rank methods (Metzler 2007a). Second, CA is efficient, es-

pecially for a small number of parameters, since the algorithm runtime is bounded

by |Λ|MAX ITER. Finally, coordinate ascent has been shown to perform well for a
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PipelineOptimization(Λ0)

1: I ← ∅
2: for Λ0

i ∈ Λ0 do
3: ⟨M,Λi⟩ ← CoordinateAscent(I,Λ0

i )
4: I ← I ∪ {Λi}
5: end for
6: return ⟨M, I⟩

Figure 3.4. The outline of the pipeline optimization.

variety of LTR tasks in prior work (Metzler and Croft 2007b; Metzler 2007a;

Metzler 2007b; Dang and Croft 2010). The empirical results presented in this

dissertation further validate the effectiveness of the coordinate ascent method.

3.5.3 Pipeline Optimization

While the base optimization procedure using coordinate ascent (as described in

Section 3.5.2) assumes that the optimized function is linear in the set of parameters

Λ, in practice, some types of query hypergraphs would require multiple stages of opti-

mization. For instance, for query expansion, we first need to optimize the parameters

of the query hypergraph based on the explicit query concepts, and then use the opti-

mized hypergraph to expand the query, and build a new query hypergraph including

the expansion concepts.

In this section, we give a high-level overview of how we handle the multi-stage

parameter optimization in query hypergraphs. To this end, we employ a simple

pipeline algorithm. While other joint optimization techniques are available in ma-

chine learning and natural language processing literature (see Finkel (2010) for a

detailed overview), we choose the pipeline algorithm, since it is conceptually simple

and efficient, and produces good empirical results.

Figure 3.4 describes the pipeline optimization algorithm. Given n free parame-

ter sets, Λ = ⟨Λ1, . . . ,Λn⟩, the parameter sets are optimized sequentially using the

coordinate ascent algorithm (see Figure 3.3). At the i-th stage of the optimization
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sequence, the previously optimized parameter sets ⟨Λ1, . . . ,Λi−1⟩ are held fixed, while

the parameter set Λi is being optimized. At the end of the optimization procedure,

the entire set of parameters Λ is optimized.

Note that the pipeline optimization algorithm does not necessarily reach a global

optimum, since the parameters are optimized sequentially, and no updates are applied

to the parameters ⟨Λ1, . . . ,Λi−1⟩, when the parameter set Λi is added to the sequence.

In practice, however, we found that pipeline optimization avoids overfitting, and

achieves a good empirical performance. We hypothesize that this is due to the fact

that only a small set of parameters is optimized at each step in the sequence, which

improves the effectiveness of the coordinate ascent algorithm.

3.6 Summary

In this chapter, we presented the theoretical foundations of query representation

using query hypergraphs. First, in Section 3.1, formally described the process of

representing search queries using a hypergraph structure. Then, in Section 3.2, we

derived a ranking principle based on the query hypergraph representation. In Sec-

tion 3.3 we described the process of query hypergraph structure induction, and in

Section 3.4 we described the query hypergraph parameterization. Finally, in Sec-

tion 3.5 we fully specified the process of the pipeline optimization of the parameters

in a query hypergraphs.

In the next chapters of this dissertation we will describe practical implementations

of retrieval models based on the theoretical query hypergraph framework. First, in

Chapter 4 we will describe the datasets and the retrieval metrics used for empirical

evaluation of our retrieval models. Then, in Chapter 5, we focus on parameterized

concept weighting in the query hypergraph framework. In Chapter 6 and Chapter 7

we focus on query expansion with query hypegraphs. Finally, in Chapter 8 we focus

on modeling parameterized concept dependencies using query hypergraphs.
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CHAPTER 4

DATASETS AND EVALUATION

In the chapters that follow, we describe the experimental evaluation of the different

retrieval models based on query hypergraphs. Therefore, in this chapter, we detail

the experimental setup used in the remainder of this dissertation. In Section 4.1 we

describe the TREC corpora we use for the evaluation. Then, in Section 4.2 we outline

the evaluation criteria used to measure the performance of the retrieval models.

4.1 TREC Corpora

The Text REtrieval Conference (TREC) series has produced a number of test

corpora over the years. These test corpora are extensively used by the information

retrieval community to enable the advancement of the state-of-the-art in retrieval

models and to ensure the reproducibility of the experimental results published in

major academic conferences. More details about TREC can be found at http://

trec.nist.gov/.

Table 4.1 summarizes the three TREC corpora used in this dissertation. As can be

seen from Table 4.1, these corpora vary by type, number of documents, and number

of relevant judgments, thereby providing a diverse experimental setup for assessing

the robustness of the proposed retrieval models.

Each of the TREC corpora in Table 4.1 consists of a document collection, a set

of topics and a corresponding set of relevance judgments. In the next sections, we

describe each of them in more detail.
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Name Description # Docs # Topics # Rel. Judg.
Robust04 528,155 Newswire 250 311,409
Gov2 25,205,179 .gov domain crawl 150 135,352
ClueWeb-B 50,220,423 Web crawl 100 28,963

Table 4.1. Summary of TREC document collections, topics and relevance judgments
used for evaluation.

⟨id⟩ 53
⟨title⟩ discovery channel store
⟨desc⟩ Find locations and information about Discovery Channel

stores and types of products they sell.

Figure 4.1. An example of ⟨title⟩ and ⟨desc⟩ queries in a TREC topic §53.

4.1.1 Document Collections

As evident from Table 4.1, the definition of a document in a TREC corpus depends

on the origin and the purpose of the corpus. Document definitions may range from

news articles in traditional newswire corpora, to emails in enterprise search corpora1,

to, most recently, tweets in microblog corpora2.

In the experiments in this dissertation, for the newswire corpus Robust04 , the

documents in the collection are news articles from different sources (e.g., Financial

Times or LA Times). For the Gov2 corpus, the documents in the collection are

web pages collected in the crawl of the .gov domain conducted in 2004. Finally, for

the largest corpus, ClueWeb-B , the documents are web pages with the highest crawl

priority derived from a large general English-language web corpus.

4.1.2 Topics

In addition to the document collection, the TREC corpora contains a set of pre-

defined topics, which can viewed as representations of information needs that users

1http://www.ins.cwi.nl/projects/trec-ent/

2http://trec.nist.gov/data/tweets/
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Grade Label Description
3 Key This page or site is dedicated to the topic; authoritative

and comprehensive, it is worthy of being a top result in
a web search engine.

2 HRel The content of this page provides substantial information
on the topic.

1 Rel The content of this page provides some information on
the topic, which may be minimal; the relevant informa-
tion must be on that page, not just promising-looking
anchor text pointing to a possibly useful page.

0 Non The content of this page does not provide useful informa-
tion on the topic, but may provide useful information on
other topics, including other interpretations of the same
query.

−2 Junk This page does not appear to be useful for any reasonable
purpose; it may be spam or junk.

Table 4.2. Graded relevance scale for the ClueWeb-B corpus.

may have, given the collection of documents in the corpus. The contents of the in-

formation needs or topics depend on the nature of the underlying TREC corpus.

For instance, for a web corpus ClueWeb-B , the topics are general informational in-

quiries, while for the more specialized Gov2 corpus they focus on themes related to

governance.

Each topic consists of a ⟨title⟩ and a ⟨desc⟩ query. The ⟨title⟩ and the ⟨desc⟩

queries in each topic represent the same information need, but differ in their level of

verbosity. A ⟨title⟩ query is a short keyword query, while a ⟨desc⟩ query is a verbose

natural language description of the information need. Figure 4.1 shows an example

of ⟨title⟩ and ⟨desc⟩ queries for a standard TREC topic.

In the experiments in this dissertation, we treat the ⟨title⟩ and the ⟨desc⟩ queries

as two separate query sets. In this way, we are able to demonstrate the performance

of the proposed retrieval methods for both keyword and verbose queries and to assess

their robustness across different types of document collections and query types.
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4.1.3 Relevance Judgments

To assess how much relevant documents can be retrieved from the collection in

response to each of the topics, a TREC corpus also provides a set of documents that

are manually judged for relevance. Different definitions and scales of relevance are

used for different tasks. For newswire collections such as Robust04 , binary relevance

judgments (relevant vs. non-relevant) are used. For web collections, documents

are judged on a graded scale. For instance, for the web collection ClueWeb-B , the

relevance scale has five grades that are shown in Table 4.2.

Note that it is easy to convert a graded relevance judgment into a binary relevance

judgment. For instance, for the scale in Table 4.2, grades ⟨3, 2, 1⟩ will be mapped to

the relevant label, and grades ⟨0,−2⟩ will be mapped to the non-relevant label.

The relevance judgments are used as the “ground truth” for the purposes of re-

trieval evaluation. In the next section, we describe how this evaluation is conducted.

4.2 Evaluation

4.2.1 Binary Evaluation Metrics

Recall that in the case of binary relevance judgments, for a given query Q the

set of relevance judgments R consists of labeled documents, where the label of i-th

document is Ri ∈ {0− non-relevant, 1− relevant}.

Given this set, we can evaluate the retrieval performance using standard classifi-

cation metrics, i.e. precision and recall. However, retrieval systems return a ranked

list of documents, and users might only be interested in examining this list until a

certain cutoff k is reached. For instance, in the case of web search, users are likely

to stop examining the ranked list when reaching the end of the first page of search

results (i.e., k = 10).

Therefore, one popular retrieval evaluation metric that we report in this disserta-

tion is precision at k-th result, which is defined as
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P@k =

∑k

i=1Ri

k
.

However, since P@k only takes into account the top k retrieved results, and ignores

the rest of the ranked list, we also use the average precision metric. Average precision

can be thought of as a weighted precision measure that gives higher weight to relevant

documents that appear near the top of the ranked list. The measure is computed by

averaging P@k for every position k where a relevant document is retrieved, up to

a depth of 1,000 documents. The average precision measure implicitly accounts for

both precision and recall, and is typically used to evaluate retrieval tasks where both

precision and recall are important factors.

Formally, average precision is defined as

AP =

∑

k : Rk=1 P@k

|R|
.

4.2.2 Graded Evaluation Metrics

For TREC web corpora that contain graded relevance judgments (as shown in

Table 4.2), it is more suitable to compute metrics that take the grades of the relevance

judgments into account rather than just their binary values.

One such metric that we report in this dissertation is normalized discounted cu-

mulative gain at rank k (NDCG@k), which was first proposed by Järvelin and

Kekäläinen (2002). Using a set of graded relevance judgments R for the query Q,

NDCG@k measures the usefulness, or gain, of a document based on its position in

the result list. The gain is accumulated from the top of the result list down to the

position k such that the gain of the results is discounted at lower ranks.

NDCG@k is defined as

NDCG@k =
1

ZR

k
∑

i=1

2Ri − 1

log2(i+ 1)
,
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where ZR is a normalizing constant that is computed using an ideal ordering of the

documents in the ranked list.

Another graded relevance metric that we report in this dissertation is expected

reciprocal rank (ERR@k), which was recently proposed by Chapelle et al. (2009).

ERR@k is based on the cascade user browsing model (Craswell et al. 2008), which

assumes that a user scans through ranked search results in order, and for each doc-

ument, evaluates whether the document satisfies the query, and if it does, stops the

search. Expected reciprocal rank is then defined as the expectation of the reciprocal

rank of a result at which a user stops.

First, the probability of user being satisfied with the i-th result is defined as

Pi =
2Ri − 1

2Rmax
,

where Rmax is the highest scale of the graded relevance judgments. Using this defini-

tion of probability Pi, the expected reciprocal rank is computed as

ERR@k =
k

∑

i=1

Pi

i

k−1
∏

j=1

(1− Pj).

Chapelle et al. (2009) showed that ERR@k consistently correlates better with a

wide range of click-based metrics compared to NDCG@k and other editorial metrics.

The difference in correlation is particularly pronounced for navigational, short, and

head queries.

4.2.3 Statistical Significance

The setup of most information retrieval experiments is as follows. We are given

two retrieval systems: baseline system B, and some candidate system A. We need to

determine whether the candidate retrieval system A is indeed better than a baseline

retrieval system B, as hypothesized, and whether this difference is statistically signif-

icant. To determine statistically significant difference, it is not sufficient to compare
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the average of some graded or binary retrieval metric (such as AP or NDCG@K)

across all the queries. Instead, the candidate system A and the baseline system B

are compared using one of the standard statistical significance methods.

There is an array of statistical significance testing methods that can be used to

compare systems A and B, including Wilcoxon signed rank, sign test, Student’s t-test

and others. Please refer to Smucker et al. (2007) for a detailed evaluation of these

statistical significance methods.

In this dissertation, following recommendations by Smucker et al. (2007), we use

Fisher’s randomization test, which is a non-parametric statistical significance test that

does not make any assumptions regarding the underlying distribution of the scores

produced by the retrieval system.

For Fisher’s randomization test, the null hypothesis is that the runs labeled by

system A and system B are identical and thus system A has no effect compared to

system B. Under the null hypothesis, any permutation of the labels A and B is an

equally likely output, and we can measure the difference between A and B for each

permutation of the labels.

Given N queries, we could measure the number of permutations for which the

difference in the retrieval metric M was greater or equal to the actual difference

between the systems. This number, divided by 2N+1 would be the exact two-sided

p-value α. Computing 2N+1 permutations is not practical for large enough N ’s (in our

collections, 100 ≤ N ≤ 250) . Therefore, for efficiency reasons, we limit the number

of permutations to 10, 000 in our experiments. If α < 0.05, we conclude that there is

a statistically significant difference between the candidate retrieval system A and the

baseline retrieval system B.

52



4.3 Summary

In this chapter, we described the standard TREC collections which include a

document collection, a set of topics and a set of corresponding relevance judgments.

In particular, we described the Robust04 , Gov2 and ClueWeb-B TREC collections,

which are used in our experimental evaluation. In addition, we presented the binary

and the graded relevance metrics which are commonly used in information retrieval

research. Finally, we introduced Fisher’s randomization test, a statistical significance

test that is used to distinguish between the performance of the retrieval systems

throughout this dissertation.

In the following chapters of this dissertation, we will evaluate the empirical results

of our work using these TREC collections and evaluation criteria.
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CHAPTER 5

PARAMETERIZED CONCEPT WEIGHTING

5.1 Introduction

In this chapter1, we focus on the parameterized concept weighting in query hy-

pergraphs. As described in Section 2.3, recently researchers found that employing

supervised concept weighting is beneficial, especially for verbose natural queries. The

supervised weighting techniques tend to outperform traditional unsupervised weight-

ing methods that are based solely on inverse document frequency or inverse collection

frequency weights (Bendersky and Croft 2008; Lease et al. 2009; Zhao and

Callan 2010).

Accordingly, in this chapter, we introduce a novel weighted sequential dependence

(WSD) model. The WSD model is a weighted extension of a sequential dependence (SD)

variant of a Markov random field model for information retrieval, first proposed by

Metzler and Croft (2005). It can also be viewed as a special case of a query

hypergraph that incorporates parameterized concept weighting but does not employ

dependencies between query concepts.

Unlike the previously proposed supervised concept weighting methods (Bendersky

and Croft 2008; Lease et al. 2009; Zhao and Callan 2010), the WSD method de-

scribed in this chapter provides a generic framework for learning the importance of

query concepts in a way that directly optimizes an underlying retrieval metric. The

WSD method directly incorporates the concept weighting into the ranking function,

1This chapter is partly based on the work published at the Third ACM International Conference
on Web Search and Data Mining (Bendersky et al. 2010).
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Figure 5.1. A Markov random field model for a three-term query under the sequen-
tial dependence assumption.

eliminating the need for a separate round of learning. In this manner, a metric

divergence – which is often inherent to the other methods that combine query repre-

sentation and ranking – is avoided. As we will show, this direct optimization strategy

yields strong retrieval effectiveness gains.

The remainder of this chapter is organized as follows. First, in Section 5.2 we

present a brief, self-contained overview of the Markov random field model and its

sequential dependence model variant. Then, in Section 5.3, we present the weighted

variant of the sequential dependence model and show that it can be modeled using a

query hypergraph. In Section 5.4 we present an emprical evaluation of the weighted

sequential dependence model using both TREC corpora and a proprietary web corpus.

We conclude the chapter in Section 5.5.

5.2 Markov Random Field for Information Retrieval

A Markov random field (MRF) is an undirected graphical model that defines a

joint probability distribution over a set of random variables. A Markov random field is

defined by a graphG, where the nodes in the graph represent random variables and the

edges define the dependence semantics between the random variables. In the context

of information retrieval, the Markov random field models the joint distribution over

a document random variable D and query term random variables t1, . . . , tN (denoted

Q).
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An example MRF for a three-term query is shown in Figure 5.1. In the MRF

depicted in Figure 5.1, the adjacent query terms (e.g., t1 and t2) are dependent on

each other since they share an edge, but non-adjacent query terms (e.g., t1 and t3)

are independent given D.

The joint distribution over the document and query terms is generally defined as:

PG,Λ(Q,D) =
1

ZΛ

∏

c∈Cliques(G)

ψ(c;λc) (5.1)

where Cliques(G) is the set of cliques in G, each ψ(c;λc) is a non-negative poten-

tial function defined over clique configuration c that measures the ‘compatibility’ of

the configuration, Λ is a set of parameters that are used within the potential functions,

and ZΛ normalizes the distribution.

Therefore, to instantiate the MRF model, one must define a graph structure and

a set of potential functions. Metzler and Croft (2005) propose three different

graph structures that make different dependence assumptions about the query terms.

The full independence variant places no edges between query terms, the sequential

dependence variant places edges between adjacent query terms (see Figure 5.1), and

the full dependence variant places edges between all pairs of query terms. In this

dissertation, we focus on the sequential dependence (SD) variant of the Markov ran-

dom field, as it has been shown to provide a good balance between effectiveness and

efficiency (Metzler and Croft 2005).

Under the sequential dependence assumption, there are two types of cliques that

we are interested in defining potential functions over. First, there are cliques involving

a single term node and the document node. The potentials for these cliques are defined

as follows:

ψ(qi, D; Λ) = exp
(

λQTf(ti, D)
)

.

It is common practice for MRF potential functions to have this type of exponential

form, since potentials, by definition, must be non-negative. Here, f(ti, D) is a match-
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ing function defined over the query term ti and the document D, and λQT is a free

parameter. The subscript QT denotes that these potentials are defined over the query

terms.

The other cliques that we are interested in are those that contain two (adjacent)

query term nodes and the document node. The potentials over these cliques are

defined as:

ψ(ti, ti+1; Λ) = exp
(

λPHf(PH(ti, ti+1), D) + λPRf(PR(ti, ti+1), D)
)

where f(PH(ti, ti+1), D) and f(PR(ti, ti+1), D) are matching functions and λPH and λPR

are free parameters. These potentials are made up of two distinct components. The

first considers ordered (i.e., exact phrase) matches and is denoted by the PH subscript.

The second, denoted by the PR subscript, considers proximity matches (refer back to

Section 3.3.1 for the detailed definitions of these types of matches).

The matching function f(κ,D) that is used by the Markov random field for in-

formation retrieval is identical to the concept matching function used by the query

hypergraphs (see Equation 3.3) and is defined as

f(κ,D) , log
tf(κ,D) + µ

tf(κ,C)
|C|

µ+ |D|
,

where κ can either be a query term t, an exact phrase PH(ti, ti+1), or a proximity

match PR(ti, ti+1) (Metzler and Croft 2005). For the detailed explanation of the

components of this matching function, refer to Section 3.3.3.

After making the sequential dependence assumption and substituting the poten-

tials ψ(ti, D; Λ), ψ(ti, ti+1, D; Λ) into Equation 5.1, documents can be ranked accord-

ing to:
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Figure 5.2. A hypergraph HSD that encodes the sequential dependence model for a
three-term query.

P (D|Q)
rank
= λQT

∑

ti∈Q

f(ti, D) +

λPH
∑

ti,ti+1∈Q

f(PH(ti, ti+1), D) +

λPR
∑

ti,ti+1∈Q

f(PR(ti, ti+1), D) (5.2)

Conceptually, this ranking function is a weighted combination of a bag-of-words score,

an exact bigram match score, and a proximity bigram match score. In this disserta-

tion, we refer to the ranking function in Equation 5.2 as the sequential dependence

model (SD). It has been shown that the parameters λQT = 0.8, λPH = 0.1, λPR = 0.1

are very robust and are optimal or near-optimal across a wide range of retrieval tasks

(Metzler and Croft 2005; Metzler and Croft 2007b). Therefore, we use this

parameter setting in the remainder of this dissertation.

5.3 Weighted Sequential Dependence Model

Note that the Markov random field model, as defined by Metzler and Croft

(2005), is a special case of a query hypergraph. The cliques and the potentials in the

Markov random field model are mapped to the concepts and the factors in the query

hypergraph, respectively.
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For instance, the sequential dependence variant of the MRF, described in Sec-

tion 5.2, can be easily represented using a query hypergraph HSD presented in Fig-

ure 5.2. The hypegraph HSD is constructed as follows:

(a) HSD contains three structures, query terms (QT), bigram phrases (PH) and bigram

proximity matches (PR). Formally, ΣQ , {QT, PH, PR}.

(b) HSD contains only local edges that are associated with local factors φ({κ}, D),

as defined by Equation 3.4.

(c) HSD is parameterized by structure. Formally,

∀κi, κj ∈ σ : λ(κi) = λ(κj) = λ(σ),

where σ ∈ ΣQ.

There are two important advantages, however, to representing queries using hy-

pergraphs, as opposed to query representation using the MRF model as defined by

Metzler and Croft (2005). First, query hypegraphs are defined over arbitrary

concepts rather than single query terms. This allows the hypergraphs to model the

dependencies between arbitrary concepts rather than terms.

Second, the query hypergraphs can be parameterized by concept, rather than by

structure, which allows for a more fine-grained weighting of query concepts, which

can be especially beneficial for verbose queries. In this section, we focus on this

second advantage and demonstrate how the SD model can be extended into a weighted

sequential dependence (WSD) model using a query hypergraph representation.

First, we can express the SD ranking function in Equation 5.2 using a notation for

the query hypergraph HSD (as defined above) as

scSD(Q,D) ,
∑

σ∈ΣQ

λ(σ)
∑

κ∈σ

f(κ,D).
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⟨title⟩ american indian museum
Terms Phrases
.502 american .166 american indian
.557 indian .166 indian museum
.592 museum

⟨desc⟩ “What are the plans for a national museum of the American Indian?”
Terms Phrases
.051 plans .022 plans national
.092 national .062 national museum
.119 museum .022 museum american
.101 american .051 american indian
.112 indian

Figure 5.3. Examples of weighted ⟨title⟩ and ⟨desc⟩ queries for TREC topic §664.
Common stopwords are automatically removed from the queries prior to weight as-
signment.

To go beyond the parameterization by structure, we will parameterize the weights

λ(·) based on the concepts themselves rather than their respective structures. Since

assigning a single weight for each concept in the vocabulary is infeasible, we employ

the parameterization-by-concept technique described in Section 3.4.2. Recall, that

in this approach we parameterize each concept using a combination of importance

features Φ. These features include frequencies both from the collection itself and

from external sources. The set of features is detailed in Table 3.2.

Using the parameterization-by-concept approach, we can define

∀κ ∈ σ : λ(κ) =
∑

ϕ∈Φ

λ(ϕ,σ)ϕ(κ).

We can now substitute the structure weight λ(σ) for the above definition of λ(κ)

in the SD model ranking function, which yields
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scWSD(Q,D) ,
∑

σ∈ΣQ

∑

κ∈σ

λ(κ)f(κ,D)

=
∑

σ∈ΣQ

∑

κ∈σ

∑

ϕ∈Φ

λ(ϕ,σ)ϕ(κ)f(κ,D)

=
∑

σ∈ΣQ

∑

ϕ∈Φ

λ(ϕ,σ)
∑

κ∈σ

ϕ(κ)f(κ,D) (5.3)

The resulting scoring function in Equation 5.3 is reminiscent of the general hy-

pergraph ranking function in Equation 3.7, if the global factor component would

be dropped. Therefore, the WSD ranking function takes into account the individual

concept weights, but not the dependencies between them.

Note that the ranking function in Equation 5.3 is linear in the set of free parame-

ters Λ = λ(ϕ,Σ). Therefore, we can directly use the coordinate ascent algorithm for

parameter optimization (see Figure 3.3). The number of the free parameters in this

function, which we call weighted sequential dependence (WSD) model, is

|Λ| = |ΣQ||Φ| = 3 · 6 = 18.

It is important to note here the major difference between the WSD method and

some previously proposed methods for query concept weighting (Bendersky and

Croft 2008; Lease et al. 2009; Zhao and Callan 2010) and query segmentation

(Bergsma and Wang 2007; Bendersky et al. 2009; Tan and Peng 2008). The

proposed WSD method provides a generic framework for learning the importance of

query term concepts in a way that directly optimizes an underlying retrieval metric.

This is different from the previous methods that learn query concept weighting and

query segmentation based on a surrogate metric, e.g., the probability of the concept

given a set of relevant documents (Zhao and Callan 2010) or the segmentation

accuracy (Bergsma and Wang 2007).

In other words, unlike these previously proposed methods, the WSDmethod directly

incorporates the concept weighting into the ranking function, avoiding the need for a

61



⟨title⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

QL 34.86 24.43 50.41 29.56 29.27 18.48
SD 36.20 25.85∗ 53.82∗ 30.90∗ 31.04 19.37
WSD 36.47∗ 26.09∗ 54.09∗ 31.68∗

† 31.25 20.23∗
†

⟨desc⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

QL 33.09 24.24 47.62 25.66 23.85 12.75
SD 35.04∗ 25.62∗ 51.11∗ 27.97 22.97∗ 12.99
WSD 37.05∗

† 27.41∗
† 52.21∗ 29.36∗

† 25.31† 14.56∗
†

Table 5.1. Retrieval evaluation based on the binary relevance metrics for the ⟨title⟩
and the ⟨desc⟩ queries. Best result in the column is bolded. Statistically significant
differences with the QL and the SD methods are marked by ∗ and †, respectively.

separate round of learning. In this manner, we avoid the issue of metric divergence

that is often inherent to the other methods that combine query representation and

ranking. As we will show, this strategy yields strong retrieval effectiveness gains.

Figure 5.3 shows an example of the weighted ⟨title⟩ and ⟨desc⟩ queries for the

TREC topic §664 when the WSD method is applied. As can be seen from Figure 5.3,

the weighting of the verbose ⟨desc⟩ query assigns higher weights to the terms that

appear in the ⟨title⟩ query american indian museum. This demonstrates the ability

of the WSD method to correctly upweight the key query terms. In addition, the key

phrases american indian and national museum are assigned the highest weights in

the verbose ⟨desc⟩ query.

5.4 Evaluation

5.4.1 Evaluation on TREC corpora

We compare the performance of our weighted sequential dependence model (WSD)

to two baseline retrieval models. The first is the query-likelihood model (QL) (Ponte

and Croft 1998), a standard bag-of-words retrieval model implemented in the Indri

search engine. The second is the unweighted sequential dependence model (SD) as
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described in Section 5.2. All the initial retrieval parameters are set to the default

Indri values, which reflect the best-practice settings. All the training and evaluation

is done using 3-fold cross-validation. The statistical significance of the differences in

the performance of the retrieval methods is determined using a Fisher’s randomized

test with 10,000 iterations and α < 0.05.

We measure the performance using standard retrieval metrics for TREC corpora,

as described in Section 4.2. For metrics that use binary relevance judgments, we

use precision at the top 20 retrieved documents (P@20) and mean average precision

across all the queries (MAP ). For metrics that use graded relevance judgments, we

use normalized discounted cumulative gain and expected reciprocal rank at rank 20

(NDCG@20 and ERR@20, respectively). We evaluate the retrieval methods under

comparison using the three TREC corpora shown in Table 4.1.

When estimating the parameters for the WSD model using coordinate ascent, we

use mean average precision as the target evaluation metric M (see Figure 3.3 for

more details). This is due to the fact that MAP is known to be a stable measure

(Buckley and Voorhees 2004), as it measures the quality of the entire ranked list.

In our evaluation we use both the ⟨title⟩ and the ⟨desc⟩ portions of TREC topics

as queries. As described in Section 4.1, ⟨title⟩ queries are generally short, and can

be viewed as keyword queries on the topic. ⟨desc⟩ queries are generally more verbose

and syntactically richer natural language expressions of the topic. For instance, the

queries in Figure 5.3 are examples of ⟨title⟩ and ⟨desc⟩ queries on the same topic,

respectively.

Table 5.1 shows the summary of the binary retrieval metrics for the three TREC

corpora for both ⟨title⟩ and ⟨desc⟩ queries. It is evident that both sequential depen-

dence models (SD and WSD) outperform the query likelihood model (QL) in almost

all the cases on all the metrics. This verifies the positive impact of the inclusion of

phrases and proximities into the query representation on the retrieval performance.
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⟨title⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

QL 11.22 40.14 16.47 40.90 8.40 19.75
SD 11.69 41.78∗ 17.09 43.23∗ 8.80 21.36∗

WSD 11.68∗ 42.02∗ 17.34 44.06∗ 9.41∗ 22.20∗

⟨desc⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

QL 11.44 38.75 15.06 37.89 7.32 17.74
SD 11.76 40.91∗ 15.73 40.97∗ 7.58 17.11
WSD 12.04∗ 42.86∗

† 16.52∗
† 42.47∗

† 8.58∗ 19.58†

Table 5.2. Retrieval evaluation based on the graded relevance metrics for the ⟨title⟩
and the ⟨desc⟩ queries. Best result in the column is bolded. Statistically significant
differences with the QL and the SD methods are marked by ∗ and †, respectively.

For the two sequential dependence models, the weighted sequential dependence

model (WSD) outperforms the unweighted one (SD) on all collections in terms ofMAP

(which is used as our metric for direct optimization). The largest gains in MAP can

be seen for the verbose ⟨desc⟩ queries, where there is always a statistically significant

difference between the WSD and the SD models (in terms of MAP ).

It is interesting to note that even for the P@20 metric, which is not directly

optimized, WSD is more effective than SD in all comparisons. This validates the effec-

tiveness and the robustness of the coordinate ascent optimization using mean average

precision as a target metric.

Table 5.2 shows the summary of the graded retrieval metrics for the three TREC

corpora for both ⟨title⟩ and ⟨desc⟩ queries. The evaluation for the graded metrics is

in line with the evaluation using the binary retrieval metrics. The WSD method is the

best among the evaluated methods in all but one comparison. The gains attained

by the weighted sequential dependence model are the largest for the verbose ⟨desc⟩

queries: WSD method is statistically significantly better than the SD method (in terms

of NDCG@20) for all the TREC corpora.
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% queries (50+% gain) % queries (50+% loss) % gain
⟨title⟩ 3.67 0.96 2.6
⟨desc⟩ 18.64 3.04 8.1

Table 5.3. Average effect of concept weighting method on the ⟨title⟩ and the ⟨desc⟩
queries across all the TREC corpora (as measured by the MAP metric).

It is also interesting to examine the relative gains from using the weighted variant

of the sequential dependence model (compared to its unweighted variant) across all

corpora for the ⟨title⟩ and the ⟨desc⟩ queries. Recall that we hypothesized that while

concept weighting is important for all queries, it benefits the longer, more verbose

queries to a larger degree due to the fact that they tend to include concepts that have

varying importance for expressing the query intent.

For instance, consider the queries in Figure 5.3. All the concepts in the ⟨title⟩

query in Figure 5.3 are key concepts for expressing the query intent, and are assigned

roughly the same weights by the WSD method. On the other hand, the ⟨desc⟩ query

has much more weight variance. For instance, the term indian is deemed twice as

important as the term plans by the WSD method.

Table 5.3 examines the difference in effectiveness gains (as measured by MAP )

as a result of applying the WSD method to both ⟨title⟩ and ⟨desc⟩ queries averaged

across the three corpora. Table 5.3 clearly demonstrates that while concept weighting

is beneficial for both types of queries, its effect is much more pronounced for the

verbose ⟨desc⟩ queries. While it significantly hurts slightly more ⟨desc⟩ queries than

⟨title⟩ queries (3.04% vs. 0.96%, respectively), it has a significant positive impact

(more than 50% effectiveness gain) on almost 19% of ⟨desc⟩ queries, compared to less

than 4% of the ⟨title⟩ queries. In addition, the overall average effectiveness gain as a

result of concept weighting is more than three times higher for the ⟨desc⟩ queries.
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5.4.2 Evaluation on a commercial web corpus

As shown in the previous section, the weighted variant of the sequential depen-

dence model demonstrates significant retrieval effectiveness improvements on three

TREC collections. In this section, we describe a set of experiments that explores

whether these gains can be directly transferred into a web search setting. To this

end, we test the ranking with a weighted sequential dependence model on a propri-

etary web corpus provided by a large commercial search engine.

The experiments with this proprietary web corpus were performed while the au-

thor was on a summer internship at Yahoo! Research. These experiments were also

published by Bendersky et al. (2010)

Since graded relevance metrics are the most common way to evaluate web search

engines (Burges et al. 2005; Chapelle et al. 2009), we only report these metrics. In

particular, we report the non-normalized discounted cumulative gain at ranks 1 and

5 (DCG@1 and DCG@5, respectively). However, in the optimization of the weighted

sequential dependence model parameters, we use the total discounted cumulative gain

– i.e. the discounted cumulative gain at the total depth of the ranked list – as the

target metricM.

Similarly to the TREC experiments, during the development phase, we found that

the results attained by optimizing this metric were more stable over all ranks than

the results attained by optimizing for the discounted cumulative gain at a particular

rank. This can be attributed to the fact that the total discounted cumulative gain

incorporates information about the entire ranked list, whereas DCG@1 and DCG@5

only consider the top ranked documents and are more prone to bias and overfitting.

To differentiate between the effect of concept weighting on queries of varying

length, as was done in the case of TREC corpora, we divide the queries into three

groups based on their length. Length is defined as a number of word tokens separated

by space in the query.
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The first group of queries (Len-2 ) includes very short queries of length two. The

second group (Len-3 ) includes queries of length three. The third group (Len-4+)

consists of more verbose queries of length varying between four and twelve.

While the queries in the first two groups mostly have a navigational intent, the

queries in the third group tend to be more complex informational queries. For each

group, we randomly sample a 1,000 web search queries for which relevance judgments

are available. We then train and evaluate (using five fold cross-validation) a separate

sequential dependence model and weighted sequential dependence model for each

group.

Table 5.4 shows the summary of the retrieval results on the three query groups.

Table 5.4 demonstrates two important findings. First, including term dependence

information is highly beneficial for queries of all lengths. SD attains up to 15.4%

improvement over QL, which is a bag-of-words model. This result is highly significant,

given the large size of our query set.

Second, concept weighting results in significant improvements for longer (Len-4+)

queries, and its performance is comparable for shorter queries to the performance of

the unweighted dependence model (slight improvement on Len-2 and slight decrease

in performance on Len-3 ). For group Len-4+, WSD attains improvement of close to

2.5% for DCG@5. This is a highly significant improvement, especially when taking

into account the importance of relevance at top ranks for the web search task.

These results using a proprietary web corpus further demonstrate the importance

of concept weighting for verbose search queries. For both TREC and web corpora,

WSD is significantly more effective than SD for this type of queries.

5.5 Summary

In this chapter, we focused on the parameterized concept weighting in query hy-

pergraphs. As a result, we introduced a novel weighted sequential dependence (WSD)
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Len-2 Len-3 Len-4+
DCG@1 DCG@5 DCG@1 DCG@5 DCG@1 DCG@5

QL 0.803 2.231 0.784 2.290 0.629 1.691
SD 0.926 2.733 1.008 2.971 0.864 2.383
WSD 0.929 2.754 0.995 2.929 0.884 2.443

- All the differences are statistically significant

Table 5.4. Comparison of retrieval results over a sample of web queries with query
likelihood (QL), sequential dependence model (SD) and the weighted sequential de-
pendence model (WSD). Discounted cumulative gain at ranks 1 and 5 is reported.

model. The WSD model is a weighted extension of a sequential dependence (SD) vari-

ant of a Markov random field model for information retrieval Metzler and Croft

(2005). Weighted sequential dependence model can also be viewed as a special case

of a query hypergraph that incorporates parameterized concept weighting but does

not employ dependencies between query concepts.

In Section 5.2 we presented a brief, self-contained overview of the Markov random

field model. Then, in Section 5.3, we presented the weighted variant of the sequential

dependence model and showed that it can be modeled using a query hypergraph. In

Section 5.4 we presented an emprical evaluation of the weighted sequential depen-

dence model using both TREC corpora and a proprietary web corpus. This empirical

evaluation demonstrates the retrieval effectiveness of the WSD model, especially for

verbose queries.

After presenting the parameterized concept weighting of query concepts in this

chapter, in the next two chapters we focus on parameterized query expansion us-

ing either the retrieval corpus (Chapter 6) or multiple external information sources

(Chapter 7). In both cases, we adopt the parameterized concept weighting approach

developed in this chapter to assign weights to expansion concepts that do not explic-

itly occur in the original search query.
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CHAPTER 6

PARAMETERIZED QUERY EXPANSION

6.1 Introduction

The main shortcoming of the weighted sequential dependence model presented in

the previous chapter, is that the weighting is performed exclusively on the concepts

that explicitly occur within the query and disregards the expansion concepts associ-

ated with the information need underlying the query (e.g., the concepts distilled by

state-of-the-art query expansion approaches such as relevance model (Lavrenko and

Croft 2003) or latent concept expansion (Metzler and Croft 2007a)). Accord-

ingly, in this chapter, we explore the question of how to seamlessly and effectively

integrate these expansion concepts within a query representation that supports pa-

rameterized concept weighting such as query hypergraphs.

To address this question, in this chapter1, we propose a novel parameterized query

expansion model. The proposed model provides an effective alternative to the stan-

dard unsupervised weighting for both single terms and multiple-term concepts, sim-

ilarly to the weighted sequential dependence model described in the previous chap-

ter. In addition, the model generalizes the current supervised concept weighting

approaches (Bendersky et al. 2010; Lease 2009; Shi and Nie 2010; Svore et al.

2010; Wang et al. 2010) and provides a unified framework for weighting both explicit

and explicit query concepts.

1This chapter is partly based on the work published at the 34th Annual ACM SIGIR Conference
(Bendersky et al. 2011).
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Query Terms Query Bigrams Expansion Terms
.1064 patrol .0257 civil air .0639 cadet
.1058 civil .0236 air patrol .0321 force
.1046 training .0104 training participants .0296 aerospace
.0758 participants .0104 participants receive .0280 cap

Table 6.1. Explicit and expansion concepts with the highest importance weight
for the query “What is the current role of the civil air patrol and what training do
participants receive?”.

As an illustrative example of the parameterized query expansion in action, consider

the verbose query

“What is the current role of the civil air patrol and what training do par-

ticipants receive?”

Table 6.1 shows the most important explicit query concepts (terms and bigram

phrases) and the most important expansion terms learned by our model. Note that

the weights assigned by our model are different from the weights that would be as-

signed by inverse document frequency (IDF) weight alone. For instance, while the

term air has higher IDF than the term training, it is deemed less important for the

query. In addition, while the term air is not important on its own, it is significant in

the context of the bigram air patrol.

In the case of the query in Table 6.1, the parameterized query expansion model

improves the retrieval effectiveness by 64% over the standard query-likelihood model

(QL) (Ponte and Croft 1998), by 21% over the WSD model described in the pre-

vious section, and by 8% over the latent concept expansion model (Metzler and

Croft 2007a). As the evaluation in Section 6.5 demonstrates, these gains in retrieval

effectiveness are consistent across queries and collections.

Expanding the query with related term or concepts has a long history in infor-

mation retrieval (Rocchio, J. 1971; Xu and Croft 1996; Lavrenko and Croft

2003; Metzler and Croft 2007a). One technique that is commonly used for query
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expansion is pseudo-relevance feedback. Pseudo-relevance feedback allows the system

to leverage information from the underlying retrieval corpus in order to expand the

query with related terms or concepts without requiring an explicit user interaction.

This is also an approach we adopt in this dissertation.

While there is a large number of successful pseudo-relevance feedback based re-

trieval models (e.g., (Cao et al. 2008; Lavrenko and Croft 2003; Metzler and

Croft 2007a; Lv and Zhai 2010; Xu and Croft 1996)), most of them employ

unsupervised weighting for both explicit and expansion concepts. A notable excep-

tion is the work by Cao et al. (2008) which uses binary classification to determine

the importance of the expansion terms. Unlike Cao et al. (2008), the proposed

parameterized query expansion method takes a more holistic approach, and assigns

importance weights to both explicit and expansion concepts.

The remainder of this chapter is organized as follows. First, in Section 6.2, we

outline the theoretical foundations of pseudo-relevance feedback and the state-of-

the-art latent concept expansion model (Metzler and Croft 2007a). Then, in

Section 6.3, we describe the process of parameterized query expansion with query hy-

pergraphs. In Section 6.4 we specify the parameter optimization in the parameterized

query expansion model. In Section 6.5 we empirically evaluate the performance of

the parameterized query expansion model. We conclude the chapter in Section 6.6.

6.2 Pseudo-Relevance Feedback

Query expansion using related terms or concepts has a long history of success in

information retrieval. One approach commonly used for automatic query expansion

is the pseudo-relevance (PRF). In the PRF approach, the underlying retrieval corpus

is leveraged to automatically expand the query with related terms that can improve

the retrieval effectiveness of the original query.
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Q members rock group nirvana

R

D-1

D-2

D-K

...

ET

music

alternative

punk

bootleg

...
Expanded Query

#weight ( 0.7 #combine(members rock group nirvana)

               0.3 #weight( 0.1 music 0.05 punk 0.007 alternative ...))

Figure 6.1. Schematic diagram of query expansion using pseudo-relevance feedback
from the retrieval corpus.

The pseudo-relevance feedback approach automates the process of relevance feed-

back by forgoing the need for the user of the retrieval system to indicate a set of

true relevant documents. In fact, previous research shows that PRF can often enable

improvements in retrieval effectiveness without requiring any extra interaction from

the user.

Figure 6.1 shows a schematic diagram of the pseudo-relevance feedback process.

First, a query Q is issued to the retrieval corpus, and a first round of retrieval is

performed. A set of documents retrieved at the top K positions (denoted R) is

referred to as the pseudo-relevant set. This is due to the fact that the true relevant

set of documents for a given query Q is unknown a priori. Therefore, this true relevant

set is approximated using the highest ranked documents in response to the query Q.

The pseudo-relevant set R is then used for extracting a list of terms or concepts

that are related to the original query. There are various methods for extracting this

list of terms or concepts that are related to the query, some of which are discussed

next. Once this list is obtained, the query is expanded with the extracted terms or
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concepts and issued again to the search engine for the final round of retrieval, the

results of which are presented to the user.

Most often, the expanded query takes a weighted form, similarly to the example

Indri query shown in Figure 6.1, which combines the original query “members rock

group nirvana” with expansion terms music, punk, alternative, etc. The original

and the expanded query parts are assigned importance weights. In addition, each

of the expansion terms or concepts is assigned a weight based on the strength of its

relatedness to the information need expressed by the original query. The various PRF

methods differ in the assignment of these concept weights.

There is an abundance of literature on query expansion using pseudo-relevance

feedback. One of the most successful of these expansion methods is the relevance

model proposed by Lavrenko and Croft (2003). In this model, the expansion

term weight is determined by its probability of being generated by a relevance model,

which is approximated by the pseudo-relevant set R. Formally,

wRM(t) , P (t|R) ≈
∑

D∈R

P (t|D)
∏

qi∈Q

P (qi|D).

Note that this formulation of the relevance model is, in fact, a bag-of-words approach,

since it assumes independence between the query terms and the expansion term t.

When we define the probabilities P (·|D) in the equation above as maximum like-

lihood estimates with Dirichlet smoothing, the weight of the expansion term t in the

relevance model can be expressed using the definition of the matching function f in

Equation 3.3. Accordingly, we can rewrite the equation above as

wRM(t) ,
∑

D∈R

exp
(

∑

qi∈Q

f(qi, D) + f(t,D)
)

.

After its initial introduction by Lavrenko and Croft (2003), the relevance

model was further expanded and generalized by other researchers to incorporate,
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among other things, more complex weighting schemes (Cao et al. 2008), term proxim-

ities (Lv and Zhai 2010), and random walks over expansion term graphs (Collins-

Thompson and Callan 2005). One of the most important and empirically suc-

cessful generalizations of the relevance model called latent concept expansion (LCE)

was recently proposed by Metzler and Croft (2007a). Latent concept expansion

has several important advantages, including state-of-the art retrieval performance

(Metzler and Croft 2007a; Lang et al. 2010) and the ability to leverage infor-

mation about arbitrary query concepts to improve the quality of query expansion.

To obtain the list of expansion concepts using LCE, one need not make any assump-

tions about the independence between the concepts in the query and the expansion

concepts. Instead, we assume the existence of an arbitrary scoring function sc(Q,D)

that assigns a relevance score to a document D in response to the query Q. Then,

the weight of the expansion concept κ is calculated using

wLCE(κ) =
∑

D∈R

exp
(

γ1sc(Q,D) + γ2f(κ,D)− γ3 log
tfκ,C

|C|

)

, (6.1)

where γi’s are free parameters.

As evident from Equation 6.1, wLCE combines three key features to assign a weight

to concept κ:

(a) The relevance of all the pseudo-relevant documents D ∈ R, which contain the

expansion concept κ – as manifested by the document score sc(Q,D).

(b) The impact of the match of the expansion concept κ in the pseudo-relevant

documents – expressed by the matching function f(κ,D).

(c) The inverse collection frequency (ICF) of the concept κ, which is calculated by

the factor − log
tfκ,C
|C|

. The ICF factor dampens the weights of very common

words, thereby reducing the number of non-content-bearing concepts in the

expansion list.
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Figure 6.2. A hypergraph HPQE that encodes the parameterized query expansion
model for a three-term query.

Latent concept expansion can be adopted to include any arbitrary concept type for

query expansion. However, in this dissertation we limit the expansion to individual

terms. First, this focus improves the overall efficiency of the query expansion. Second,

previous work found no significant benefits when additional types of latent concepts

(such as phrases) were associated with the query in addition to terms alone (Metzler

and Croft 2007a).

The LCE approach is general enough to incorporate multiple types of scoring and

matching functions to weight an expansion concept. However, it still lacks the flexibil-

ity of the fully parameterized concept weighting model (introduced in Chapter 5) that

allows the use of an arbitrary set of concept importance features for concept weight-

ing. In the next section, we show that the LCE approach can be further generalized

by using query hypergraphs, which incorporate the concept importance features in

the expansion concept weighting. We refer to this approach as parameterized query

expansion.

6.3 Parameterized Query Expansion with Query Hypergraphs

In this section, we introduce the parameterized query expansion (PQE) approach

that enables to perform query expansion using the query hypergraph representation.

Recall from Section 3.1 that the concepts modeled by the query hypergraph H are

not limited to the concepts that explicitly occur in the original user query. Instead,
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any concept that is related to the information need expressed by the query can be

added to the query hypegraph H as a vertex.

In this manner, query hypergraphs provide a flexible framework for performing

query expansion. As Figure 6.2 shows, query expansion can be straightforwardly

modeled by integrating an additional expansion terms structure, denoted ET, into the

query hypegraph. This structure contains the expansion terms that are associated

with the original query, e.g. the terms that were obtained through the process of

pseudo-relevance feedback.

As stated in the previous section, we limit our attention to expansion using single

terms rather than arbitrary concepts. This restriction is mainly due to the efficiency

considerations, since query latency is an important concern in information retrieval

applications. However, from the purely theoretical perspective, query hypergraphs

can also incorporate arbitrary expansion concepts rather than single terms.

Any of the techniques described in Section 6.2 can be applied for obtaining the set

of expansion terms in the ET structure. For instance, we could use the bag-of-words

relevance model (Lavrenko and Croft 2003), or the latent concept expansion that

better accounts for the dependencies between the query and the expansion terms

(Metzler and Croft 2007a).

Instead, in this section we explore a novel query expansion technique that leverages

the parameterized concept weighting approach described in Chapter 5 for performing

a more effective query expansion. Recall that the LCE approach uses a dampening ICF

factor that reduces the weight of common expansion terms (see Equation 6.1). While

ICF was shown to be a valuable factor for an effective expansion term weighting

(Metzler and Croft 2007a; Lang et al. 2010), it can be further enhanced by

considering the fully parameterized approach.

Instead of a single dampening factor, let us associate each expansion term κ with

a set of importance features Φ. For simplicity, the set Φ is identical to the feature set
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used for assigning the weights to the explicit concepts in the query (see Table 3.2).

Using the importance features in the set Φ, we can represent the expansion term

weight using a parameterized concept weight

wPCW(κ) ,
∑

ϕ∈Φ

λ(ϕ, ET)ϕ(κ).

Further, recall that the importance weights are also used in assigning a relevance

score to document D in response to query Q in a parameterized concept weighting

approach. An example of such approach is the weighted sequential dependence model

(WSD) presented in Equation 5.3. In this approach, we assign parameterized concept

weights to query terms (represented by the QT structure), phrases (PH structure)

and proximity matches (PR structure), and incorporate these weights in the ranking

function

scWSD(Q,D) =
∑

σ∈{QT,PH,PR}

∑

ϕ∈Φ

λ(ϕ,σ)
∑

κ∈σ

ϕ(κ)f(κ,D)

Therefore, when considering the weight assigned to an expansion term by a pseudo-

relevance feedback based approach such as wLCE in Equation 6.1, the parameterized

concept weights play a dual role. First, via their inclusion in the ranking function,

they determine the selection and the scores of the documents in the pseudo-relevant

set R. Second, they impact the weights of the expansion terms selected from the

pseudo-relevant set.

Accordingly, we base the parameterized query expansion (PQE) approach on the

general form of the LCE weighting presented in Equation 6.1. First, we substitute the

ranking function in Equation 6.1 by the WSD ranking function scWSD(Q,D). Second,

we substitute the ICF dampening factor by the general parameterized concept weight

wPCW. The resulting expansion concept weight is
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wPQE(κ) ,
∑

D∈R

exp
(

scWSD(Q,D) + f(κ,D) + wPCW(κ)
)

=

=
∑

D∈R

exp
(

∑

σ∈{QT,PH,PR}

∑

ϕ∈Φ

λ(ϕ,σ)
∑

κ∈σ

ϕ(κ)f(κ,D) +

+ f(κ,D) +
∑

ϕ∈Φ

λ(ϕ, ET)ϕ(κ)
)

. (6.2)

Note that the free parameters in Equation 6.2 are now governed by the set of impor-

tance features Φ, rather than the fixed weights γi as in Equation 6.1. This change

improves the expansion term selection in two ways:

(a) The weight of the expansion term is increasing if it occurs in documents that

contain many highly weighted explicit query concepts.

(b) The weight of the expansion term varies based on the values of all the impor-

tance features associated with the term (and not just a single ICF factor).

Once we obtained a set of expansion terms, it is captured by the expansion term

structure ET in the query hypergraph H. Then, to assign a relevance score to docu-

mentD in response to queryQ, we use the parameterized concept weighting approach,

and use the weighted concept matches from both the explicit query concept and the

expansion terms. Thus, the PQE ranking function is

scPQE(Q,D) ,
∑

σ∈{QT,PH,PR,ET}

∑

ϕ∈Φ

λ(ϕ,σ)
∑

κ∈σ

ϕ(κ)f(κ,D) (6.3)

To complete the derivation of the PQE retrieval model, in the next section we

describe the pipeline optimization of the parameters λ(ϕ,σ) in Equation 6.3.

6.4 Parameter Optimization

The weighted sequential dependence model (WSD), a parameterized concept weight-

ing approach presented in Chapter 5 only considers the weighting of the concepts that
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camels in north america
LCE expansion terms PQE expansion terms

indians bison
mexico oil
new NAFTA
dress fossil

clothing expansion
· · · · · ·

AP = 0.07 AP = 0.49

Table 6.2. Examples of expansion terms obtained by the LCE and the PQE methods
for the query “camels in north america”.

PQEOptimization(Λ0)

1: Λ0
Q = Λ0

{QT,PH,PR}

2: Λ0
E = Λ0

{ET}

3: ⟨M,ΛQ⟩ ← CoordinateAscent(∅,Λ0
Q)

4: ⟨M,ΛE⟩ ← CoordinateAscent(ΛQ,Λ
0
E)

5: return ⟨M,ΛQ ∪ ΛE⟩

Figure 6.3. Pipeline optimization of the parameterized query expansion method.

explicitly occur in the query. In contrast, the parameterized query expansion (PQE)

combines weighting of the explicit query concepts with the weighting of the expansion

terms obtained through pseudo-relevance feedback.

Since PQE combines evidence from both the explicit query and the ranked list

produced by this query (refer to Figure 6.1 for the outline of the pseudo-relevance

feedback process), the parameterization of the concepts that explicitly occur in the

query (concepts in the structures QT, PH, and PR) will have a direct effect on the

expansion terms that are included in the expansion terms structure ET.

As an example consider the expansion terms obtained by the LCE expansion ap-

proach Metzler and Croft (2007a) and the PQE expansion approach for the query

“camels in north america” presented in Table 6.2. The LCE expansion approach does

not employ parameterized concept weighting in the expansion stage, while the PQE
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expansion approach assigns weights to the explicit query concepts using the weighted

sequential dependence model.

There is a stark difference between the two expansion term lists in Table 6.2.

The LCE list focuses on terms related to the Native Americans, while the PQE list

focuses on fossils and other North American animal species that went extinct. This

difference results in a significant increase in average precision of the query (0.49 for

the PQE approach, compared to the 0.07 for the LCE approach).

Motivated by this example, instead of using a single round of optimization of the

free parameters Λ in the PQE ranking function in Equation 6.3, we propose a novel

two-stage pipeline optimization technique. While simple, this two-stage technique is

effective for learning robust weights for both explicit and latent query concepts, as

well as improving the quality of the set of ET-concepts.

We base our approach on the general pipeline optimization algorithm first pre-

sented in Figure 3.4. The algorithm in Figure 6.3 provides a schematic overview of

this two-stage pipeline optimization.

First, we denote the initial parameterization of the explicit query concepts (con-

cepts in the QT, PH, and PR structures) Λ0
Q, and the initial parameterization of the

expansion terms Λ0
E. At the first stage of the pipeline optimization algorithm (line 3

in Figure 6.3), we include only the explicit concept types {QT, PH, PR} for optimizing

the initial parametrization Λ0
Q. This process obtains an optimized parameterization

ΛQ, which is used for obtaining the pseudo-relevant set R and a large pool of expan-

sion terms to be included in the ET structure. We limit the size of this large pool

to at most 100 terms in our experiments. As Table 6.2 illustrates, the expansion

terms using the optimized parameterization ΛQ, can be radically different from the

one obtained using a non-parameterized retrieval model (as in the case of the LCE

approach).
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At the second stage of the training phase, we include both explicit query concepts

and the expansion terms from the ET structure for optimizing the initial parameter-

ization Λ0
E (line 4 in Figure 6.3). Note that the optimized parameterization of the

explicit query concepts ΛQ is kept fixed during this process.

This second round of the coordinate ascent algorithm may be computationally

intensive, especially for the web-scale collections, since the query expansion produces

queries that require a large number of concept matches in the ranked documents.

To alleviate this problem to some degree, and to make the optimization process

more efficient, at each iteration of the coordinate ascent algorithm, we include in the

expanded queries at most 10 expansion terms with the highest weight (as determined

by the parameterization Λi
E at the i-th iteration of the coordinate ascent algorithm)

from the initial large expansion term pool of 100 terms.

The optimization phase concludes after this second round of the coordinate ascent

algorithm is completed. At this point, the entire set of parameters Λ is optimized in

terms of the target retrieval metricM.

In this way, we ensure that the parameters Λ in the PQE ranking function (Equa-

tion 6.3) are optimized to deliver both the best selection of the expansion terms and

the most effective retrieval performance of the expanded queries. As our experimental

results demonstrate, this leads to a significant improvement over the state-of-the-art

non-parameterized retrieval methods that perform query expansion such as LCE.

6.5 Evaluation

In this section, we report the results of the empirical evaluation of the parameter-

ized query expansion method (PQE) described in the previous section. We compare

the PQE method both to retrieval baselines that do not employ query expansion (Sec-

tion 6.5.1) and to the latent concept expansion (LCE) method (Section 6.5.2). Then,

in Section 6.5.3 we examine the robustness of the PQE retrieval method across queries.
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⟨title⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

SD 36.20 25.85 53.82 30.90 31.04 19.37
WSD 36.47 26.09 54.09 31.68∗ 31.25 20.23∗

PQE 39.12∗
† 29.06∗

† 55.37 33.64∗
† 31.98 20.83∗

⟨desc⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

SD 35.04 25.62 51.11 27.97 22.97 12.99
WSD 37.05 27.41∗ 52.21 29.36∗ 25.31 14.56∗

PQE 38.35∗
† 29.23∗

† 53.89∗ 31.35∗
† 24.84 15.02∗

Table 6.3. Comparison of the parameterized query expansion method (PQE) to the
non-expanded baselines based on the binary relevance metrics for the ⟨title⟩ and the
⟨desc⟩ queries. Best result in the column is bolded. Statistically significant differences
with the SD method and the WSD method are marked by ∗ and †, respectively.

All the initial retrieval parameters in the experiments reported in this section

are set to the default Indri values, which reflect the best-practice settings. The

parameter optimization and the evaluation are done using 3-fold cross-validation. The

statistical significance of the differences in the performance of the retrieval methods

is determined using a Fisher’s randomized test with 10,000 iterations and α < 0.05.

The expansion methods LCE and PQE, unless otherwise noted, use the 25 top

retrieved documents for constructing the pseudo-relevant set R and the 10 highest

weighted expansion terms for query expansion. This ensures that all the retrieval

methods are relatively efficient, even for large-scale web collections.

We measure the performance using standard retrieval metrics for TREC corpora,

as described in Section 4.2. For metrics that use binary relevance judgments, we

use precision at the top 20 retrieved documents (P@20) and mean average precision

across all the queries (MAP ). For metrics that use graded relevance judgments, we

use normalized discounted cumulative gain and expected reciprocal rank at rank 20

(NDCG@20 and ERR@20, respectively).
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⟨title⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

SD 11.69 41.78 17.09 43.23 8.80 21.36
WSD 11.68 42.02 17.34 44.06 9.41 22.20
PQE 11.82 44.23∗

† 17.27 44.58 8.84 21.94

⟨desc⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

SD 11.76 40.91 15.73 40.97 7.58 17.11
WSD 12.04 42.86∗ 16.52∗ 42.47∗ 8.58 19.58∗

PQE 12.35∗ 44.24∗ 16.89∗ 43.06∗ 8.78 19.01

Table 6.4. Comparison of the parameterized query expansion method (PQE) to the
non-expanded baselines based on the graded relevance metrics for the ⟨title⟩ and the
⟨desc⟩ queries. Best result in the column is bolded. Statistically significant differences
with the SD method and the WSD method are marked by ∗ and † respectively.

6.5.1 Comparison with the Non-Expanded Baselines

In this section, we compare the retrieval performance of the parameterized query

expansion method (PQE) to the retrieval performance of two state-of-the-art baselines

that do not employ query expansion. The first baseline is the sequential dependence

model (SD) first proposed by Metzler and Croft (2005). The second baseline is

the weighted variant of the sequential dependence model (WSD), which is based on

the parameterized concept weighting approach (refer to Chapter 5 for the detailed

description and the empirical comparison of these two retrieval methods).

Table 6.3 compares the performance of the PQE method with these two baselines,

when binary metrics are used for evaluation. Note that in almost all of the cases

(except for P@20 for the ClueWeb-B corpus) the PQE method is superior to both SD

and WSD methods. It is never significantly worse than any of the two non-expanded

baselines, and in many cases statistically significantly better.

The PQE method demonstrates the largest overall effectiveness gains for the Ro-

bust04 corpus, where it improves the retrieval effectiveness (in terms of MAP ) by

11% for the ⟨title⟩ queries, and by 7% for the ⟨desc⟩ queries. In contrast, the weakest
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performance of the PQE method is for the ClueWeb-B corpus. For the ClueWeb-B cor-

pus, PQE does not improve MAP by more than 3% for both query types, and these

improvements are not statistically significant, when compared to the WSD method

(which is the best-performing non-expanded retrieval baseline).

These relative improvements are in line with the nature of these two retrieval

corpora. While Robust04 is a clean and relatively small newswire corpus, ClueWeb-B

is a large noisy web collection that contains a large number of spam documents (Lin

et al. 2010). Pseudo-relevance feedback with documents retrieved from the Robust04

corpus is, thus, much more likely to yield expansion terms that are relevant to the

information need expressed by the query and to improve the retrieval performance.

Table 6.5 illustrates this point, by showing side-by-side the expansion terms ob-

tained via pseudo-relevance feedback from the Robust04 and ClueWeb-B corpora for

queries “international art crime” and “dangerous vehicles”. In Table 6.5, the expan-

sion terms from the Robust04 corpus tend to be more specific and focused on the

topic of the query (e.g., GM and Honda for the query “dangerous vehicles”), while

the terms retrieved from the ClueWeb-B corpus are more vague and general (project,

road, safety) and sometimes are either incomprehensible or unrelated to the topic of

the query (rankreason, www).

Comparison using the graded relevance judgments shown in Table 6.4 reveals a

similar picture to the comparison in Table 6.3. The improvements are most visible

for the Robust04 corpus, and the performance for the ClueWeb-B corpus is never

significantly better compared to the non-expanded baselines.

One important thing to note is that the PQE method improves the early precision

metrics (P@20, ERR@20, and NDCG@20) to a much lesser degree than the MAP

metric, which takes into account the entire ranked list. This is due to the fact that the

PQE method is a query expansion method and therefore it is likely to improve recall

by introducing new related terms to the query and retrieving documents that are
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international art crime
Robust04 ClueWeb-B
museum project
work rankreason
artist intern
stolen www
. . . . . .
dangerous vehicles

Robust04 ClueWeb-B
car road
gm safety

honda good
battery ar
. . . . . .

Table 6.5. Comparison of the expansion terms obtained via pseudo-relevance feed-
back from the Robust04 and the ClueWeb-B collections for queries “international art
crime” and “dangerous vehicles”.

relevant to the information need but contain only few (or none) of the query terms.

However, introducing new expansion terms does not necessarily have a significant

impact on early precision, since the documents retrieved at the top ranks are likely

to contain most of the query terms.

6.5.2 Comparison with the Query Expansion Techniques

Table 6.6 and Table 6.7 demonstrate the experimental comparison of the parame-

terized query expansion method (PQE) to the latent concept expansion method (LCE),

when either binary or graded judgments are used, respectively. In most comparisons,

the PQE method is superior to the LCE method. The PQE method is always more ef-

fective than the LCE method for the ⟨desc⟩ queries, and is superior to the LCE method

in 9 out of 12 comparisons for the ⟨title⟩ queries.

Similarly to the case of the non-expanded baselines (described in the previous sec-

tion), PQE has less effect on the retrieval performance (compared to the LCE method)

for the ClueWeb-B corpus than for the Robust04 and Gov2 corpora. While for the
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⟨title⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

LCE 38.37 28.89 54.26 32.59 33.07 20.90
PQE 39.12 29.06 55.37∗ 33.64∗ 31.98 20.83

⟨desc⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

LCE 37.29 28.32 51.95 30.34 23.70 14.09
PQE 38.35 29.23∗ 53.89∗ 31.35∗ 24.84 15.02

Table 6.6. Comparison of the parameterized query expansion method (PQE) to the
latent concept expansion (LCE) baseline based on the binary relevance metrics for
the ⟨title⟩ and the ⟨desc⟩ queries. Best result in the column is bolded. Statistically
significant differences with the LCE method is marked by ∗.

⟨title⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

LCE 11.84 43.77 16.65 43.26 8.82 21.95
PQE 11.82 44.23 17.27 44.58 8.84 21.94

⟨desc⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

LCE 12.08 42.59 15.88 40.48 8.54 17.90
PQE 12.35 44.24∗ 16.89∗ 43.06∗ 8.78 19.01

Table 6.7. Comparison of the parameterized query expansion method (PQE) to the
latent concept expansion (LCE) baseline based on the graded relevance metrics for
the ⟨title⟩ and the ⟨desc⟩ queries. Best result in the column is bolded. Statistically
significant differences with the LCE method is marked by ∗.
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Topics MAP Source
(a) MIX+SOFT-10 351-400 21.25 Table 11 (Cao et al. 2008)

PQE 21.97
(b) PRM1 801-850 33.22 Table 2 (Lv and Zhai 2010)

PQE 37.41

Table 6.8. Comparison of the PQE method with (a) Cao et al., 2008; (b) Lv and
Zhai, 2010. Best result per comparison is marked by boldface.

Robust04 and Gov2 corpora, PQE posits statistically significant gains in 3 out of 4

MAP comparisons, it has no significant impact on any retrieval metric, binary or

graded, for the ClueWeb-B corpus.

This is in line with the results in the previous section. As demonstrated in Ta-

ble 6.5, the quality of the expansion terms obtained via pseudo-relevance feedback

from the ClueWeb-B corpus is often low, due to the noisy nature of text contained

in the general web documents. Therefore, the parameterized query expansion, which

only re-weights the expansion terms based on a combination of importance features,

is not able to attain significant gains over the non-parameterized latent concept ex-

pansion.

In addition to latent concept expansion, we compare the performance of the PQE

retrieval method to the performance of two recently proposed query expansion meth-

ods that employ some concept weighting and proximity information. The first method

was proposed by Cao et al. (2008), and uses binary classification to weight expansion

terms. The second method was proposed by Lv and Zhai (2010), and leverages term

proximities for expansion term weighting. While less general than the approach pro-

posed here, these two methods also focus on concept weighting, and hence we briefly

compare their performance to PQE.

For comparison, we use the MAP results reported in the papers by Cao et al.

(2008) and Lv and Zhai (2010), for a subset of topics overlapping with our evaluation.

The reported results are for the ⟨title⟩ queries only, since these queries are also used
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in the papers under consideration. Table 6.8 reports the comparison between the

PQE method and these two methods. While we cannot draw statistical significance

conclusions, since we have no information on individual query performance, we can

see from Table 6.8 that PQE is the best performing method in both comparisons.

In all the cases in Table 6.8 similar query and document processing was applied,

and similar baselines were reported. Hence, we can confidently attribute the per-

formance gains to the effectiveness of our method, even when compared to other

state-of-the-art query expansion methods that use concept weighting and proximity

information.

6.5.3 Robustness

In Table 6.6 and Table 6.7 we have shown that the PQE method significantly im-

proves the overall performance compared to a state-of-the-art latent concept expan-

sion method. In this section, we analyze the robustness of the PQE method, compared

to the LCE method. Following previous work (Metzler and Croft 2007a), we de-

fine the robustness of the method as the number of queries improved or hurt (and

by how much – in terms of MAP ) as the result of the application of the method. A

highly robust expansion technique will significantly improve many queries and only

minimally hurt a few.

Figure 6.4 provides an analysis of the robustness of LCE and PQE for the ⟨desc⟩

queries. The histograms in Figure 6.4 show, for various ranges of relative decreases

or increases in the MAP metric, the number of queries that were hurt or improved

with respect to a standard bag-of-words baseline, query-likelihood (QL), which is the

default retrieval method in Indri. This is in line with the measurement of robustness

done by Metzler and Croft (2007a).

Figure 6.4 unequivocally demonstrates that the PQE method is more robust com-

pared to LCE method. For instance, for the Robust04 corpus, PQE improves the per-
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formance of 73% of the queries w.r.t. QL, compared to 66% of the queries improved by

the LCE. Similarly, for the Gov2 corpus, PQE improves the performance of 73% of the

queries w.r.t. QL, compared to 65% of the queries improved by the LCE method. Even

for the ClueWeb-B corpus, where the performance of the PQE is not better than the

LCE performance to a statistically significant degree, PQE improves the perfomance of

60% of the queries w.r.t. QL, compared to 53% of the queries improved by the LCE.

In addition, the PQE method is much less likely to significantly hurt the perfor-

mance, compared to the LCE method for the Robust04 and the Gov2 corpora. For

the Robust04 corpus, PQE decreases performance by more than 50% for only 5% of

the queries, compared to the 7% of the queries hurt by the LCE method. For the Gov2

corpus, PQE decreases performance by more than 50% for only 6% of the queries, com-

pared to the 10% of the queries hurt by the LCE method. However, for the ClueWeb-B

corpus, there is no difference in the number of queries significantly hurt by either of

the methods.

Finally, it is interesting to examine the relative gains from using the parameterized

query expansion compared to the latent concept expansion across all corpora for the

⟨title⟩ and the ⟨desc⟩ queries. Recall that in the previous chapter, we found that while

concept weighting is important for all queries, it benefits the longer, more verbose

queries to a larger degree due to the fact that they tend to include concepts that

have varying importance for expressing the query intent (see Table 5.3 for detailed

comparison).

Similarly, in this section we pose a similar hypothesis for the parameterized query

expansion. Since the PQE method combines the effects of the parameterized con-

cept weighting of the explicit query concepts and the parameterized weighting of the

expansion terms, we hypothesize that the effectiveness gains of the PQE method (com-

pared to the non-parameterized LCE method) will be more pronounced for the verbose

⟨desc⟩ queries.
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% queries (50+% gain) % queries (50+% loss) % gain
⟨title⟩ 4.3 1.3 1.3
⟨desc⟩ 15.4 5.1 4.4

Table 6.9. Average effect of the parameterized query expansion (PQE) method on
the ⟨title⟩ and the ⟨desc⟩ queries across all the TREC corpora (as measured by the
MAP metric).

Table 6.9 examines the difference in effectiveness gains compared to the LCEmethod

(as measured by MAP ) as a result of applying the PQE method to both ⟨title⟩ and

⟨desc⟩ queries averaged across the three corpora. Table 6.9 clearly demonstrates that

while the parameterized query expansion is beneficial for both types of queries, its

effect is much more pronounced for the verbose ⟨desc⟩ queries. While it significantly

hurts more ⟨desc⟩ queries than ⟨title⟩ queries (5.1% vs. 1.3%, respectively), it has a

significant positive impact (more than 50% effectiveness gain) on more than 15% of

⟨desc⟩ queries, compared to slightly more than 4% of the ⟨title⟩ queries. In addition,

the overall average effectiveness gain as a result of concept weighting is almost three

times higher for the ⟨desc⟩ queries.

6.6 Summary

In this chapter we introduced the parameterized query expansion using query

hypergraphs. First, in Section 6.2, we outlined the theoretical foundations of pseudo-

relevance feedback and the state-of-the-art latent concept expansion model (Metzler

and Croft 2007a). Then, in Section 6.3, we showed how the process of param-

eterized query expansion can be modeled within the query hypergraph framework.

In Section 6.4, we specified the parameter optimization in the parameterized query

expansion model. In Section 6.5 we empirically evaluated the performance of the

parameterized query expansion model.

One important shortcoming of the parameterized query expansion as described in

this chapter, is the fact that we only use a single information source, namely the re-
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Figure 6.4. Robustness of the LCE and PQE methods for the ⟨desc⟩ queries with
respect to the QL method.
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trieval corpus, for deriving the expansion terms. In the next chapter, we describe how

this shortcoming can be addressed by developing a parameterized query expansion

approach that leverages and merges evidence from multiple information sources.
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CHAPTER 7

PARAMETERIZED QUERY EXPANSION WITH
MULTIPLE INFORMATION SOURCES

7.1 Introduction

While pseudo-relevance feedback using the retrieval corpus described in the pre-

vious chapter often results in increased retrieval performance, it has a drawback of

using only a single information source for performing query expansion. Oftentimes,

this approach may lead to a low recall of relevant expansion terms. This is espe-

cially true for large-scale web corpora where the quality of the initial set of retrieved

documents may be insufficient for generating useful expansion terms.

To illustrate this phenomena, Table 7.1 compares the output of query expansion

using multiple sources proposed in this chapter for the keyword query “ER TV Show”

to the output of the latent concept expansion (LCE) method (Metzler and Croft

2007a) that uses either the retrieval corpus or the Wikipedia corpus for query ex-

pansion (please refer to Section 6.2 for more details on the LCE expansion method).

It is clear from Table 7.1 that there are two main advantages of the proposed query

expansion with multiple information sources (MSE), compared to the LCE method.

First, the LCE method assumes equal importance among query terms and query

phrases by assigning them fixed weights. On the other hand, the proposed MSEmethod

takes a parameterized concept weighting approach and assigns relative importance

weights, based on the evidence from multiple importance features, to explicit query

terms and phrases. For instance, in the context of the query “ER TV Show”, the most

important term is “er” and the phrase “er tv” is more important than the phrase “tv

show”.
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Latent Concept Expansion (Retrieval Corpus)
(Retrieval Corpus)

Query Expansion Terms
0.479 er 0.145 tv
0.479 tv 0.112 er
0.479 show 0.055 folge
0.120 er tv 0.054 selbst
0.120 tv show 0.034 show

· · ·
AP = 12.29

Latent Concept Expansion (Wikipedia)
Query Expansion Terms
0.464 er 0.156 tv
0.464 tv 0.074 bisexual
0.464 show 0.066 film
0.116 er tv 0.064 season
0.116 tv show 0.059 series

· · ·
AP = 25.68

Multiple Source Expansion
Query Expansion Terms
0.297 er 0.085 season
0.168 tv 0.065 episode
0.192 show 0.051 dr
0.051 er tv 0.043 drama
0.012 tv show 0.036 series

· · ·
AP = 38.31

Table 7.1. Comparison of the performance of the latent concept expansion (LCE)
with retrieval corpus or Wikipedia to the performance of the query expansion using
multiple information sources (MSE) for the query “ER TV Show”.
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(Retrieval Corpus)

Expansion Terms 

(Wikipedia)

Expansion Terms 

(Anchor Text)

Merge

Expansion Terms 

(Multiple Information Sources)

Figure 7.1. Schematic diagram of query expansion with three information sources:
retrieval corpus, Wikipedia, and anchor text.

Second, LCE uses a single source for expansion, which can sometimes lead to topic

drift. As a case in point, in Table 7.1, LCE with the retrieval corpus expands the query

with non-English terms folge and selbst, and LCE with Wikipedia expands the query

with non-helpful terms bisexual and film. To combat topic drift, the MSE method com-

bines evidence from multiple sources (including, among others, the retrieval corpus

and the Wikipedia) to derive a relevant and diverse list of expansion terms.

Note that the MSE expansion method also differs from the PQE method described

in the previous chapter. Rather than re-weighting the expansion terms coming from a

single source (pseudo-relevance feedback with the retrieval corpus), it assigns weights

to multiple information sources, which are used for pseudo-relevance feedback. In

this way, MSE may discover diverse, relevant expansion terms that are not returned

by the pseudo-relevance feedback using the original corpus.

Due to these advantages, we hypothesize that a parameterized query expansion

that uses multiple information sources will yield better results than any of the pre-
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viously discussed query expansion methods in isolation. In fact, for the query in

Table 7.1, our query expansion improves the retrieval performance by 50% compared

to the best performing LCE-based method.

The query expansion method presented in this chapter1 synthesizes three main re-

search directions. First, it incorporates the highly effective term proximity matching

of the sequential dependence model, which was first proposed by Metzler and Croft

(Metzler and Croft 2005). Second, it incorporates the state-of-the-art parame-

terized concept weighting framework discussed in Chapter 5. Finally, it is inspired

by previous work that demonstrates that query expansion using external corpora is

highly effective (Diaz and Metzler 2006; Lin et al. 2011; Xu et al. 2009).

Figure 7.1 shows a schematic diagram of query expansion using multiple infor-

mation sources. The diagram shows the case of expansion with three information

sources, however the same principle may be applied to any number of information

sources, without a loss of generality.

First, a query is issued to each of the information sources, and a list of expansion

terms is retrieved for each source using pseudo-relevance feedback (see the diagram

in Figure 6.1 for a detailed description of the pseudo-relevance feedback process).

Then, at the Merge stage, the expansion terms from all the sources are combined

into a single list. The Merge stage takes into account both the expansion source and

the term score in the expansion source for determining the final merged score of the

expansion term. Finally, the merged list of expansion terms is used for ranking the

documents in the collections in response to the user query.

In the remainder of this chapter, we provide details on the process of parameterized

query expansion using multiple information sources, as schematically described in

Figure 7.1. In Section 7.2 we model the multiple source query expansion using query

1This chapter is partly based on the work published at the Fifth ACM International Conference
on Web Search and Data Mining (Bendersky et al. 2012).
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hypergraphs. Then, in Section 7.3, we describe the information sources used for query

expansion in this chapter. In Section 7.4, we outline the optimization of the free

parameters in the multiple source expansion. In Section 7.5, we report the results

of the empirical evaluation of query expansion using multiple information sources.

Finally, we conclude this chapter in Section 7.6.

7.2 Multiple Source Expansion with Query Hypergraphs

Recall from Section 3.3.3, that the concept importance weight λ(κ) measures the

importance of concept κ for conveying the user intent underlying the query Q. In its

simplest form, the concept importance function may be a single collection statistic

associated with the concept κ such as inverse document frequency (Sparck Jones

1988) or the normalized ICF factor (Metzler and Croft 2007a).

Thus far in this dissertation we have shown that the supervised models of concept

weighting that leverage statistics from external information sources (e.g., query logs,

Wikipedia, large n-gram repositories, etc.) can significantly improve the retrieval

performance. However, these models were used for either weighting the explicit query

concepts (as in the weighted sequential dependence model introduced in Chapter 5),

or re-weighting the expansion terms that were associated with the query via pseudo-

relevance feedback using the retrieval corpus (as in the parameterized query expansion

model in Chapter 6).

In contrast, in this section we show that external information sources can also

be used, in addition to concept weighting, to select and weight related and helpful

terms with which the original query can be expanded. As the example in Table 7.1

demonstrates, such terms can be more relevant and diverse than the expansion terms

that are obtained through the standard process of pseudo-relevance feedback on the

retrieval corpus, as presented in the previous work by Lavrenko and Croft (2003)

and Metzler and Croft (2007a).
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Figure 7.2. Two hypergaphs that encode the multiple source expansion model for
a three-term query with three information sources.
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To this end, we define a set of external information sources S, which we use as

a basis for deriving features for query expansion. To make our approach as widely

applicable as possible, we make no assumptions about the internal structure of these

sources, and treat them as standard unstructured textual corpora. We defer the

precise definition of the external information sources in the set S used for weighting

and expansion to Section 7.3.

In what follows, we explain how to use this set of external sources S for the ex-

pansion of the original query with new related terms. We then show how to construct

a hypergraph corresponding to these concepts, and how to rank the documents in the

collection accordingly.

Following previous chapters, to assign a weight to an explicit query concept κ we

use the parameterized concept weighting approach described in Chapter 5. Recall

that in this approach, a parameterized concept weight is expressed as a weighted

combination of importance features

wPCW(κ) =
∑

ϕ∈Φ

λ(ϕ)ϕ(κ).

As shown in Section 5.3, this parameterized concept weighting gives rise to the

weighted sequential dependence retrieval model, which assigns a relevance score to

document D in response to query Q by a ranking function

scWSD(Q,D) =
∑

σ∈{QT,PH,PR}

∑

ϕ∈Φ

λ(ϕ,σ)
∑

κ∈σ

ϕ(κ)f(κ,D),

where the set {QT,PH,PR} is a set of structures containing the explicit query concepts

(terms, phrases and proximity matches.

A key observation that was made in Chapter 6 is that the proposed ranking func-

tion is not limited to the set of explicit query concepts contained in these structures.

99



Instead, as demonstrated by the parameterized query expansion approach in Chap-

ter 6 the ranking function may include expansion concepts from the retrieval corpus,

rather than the search query itself.

In this section, we generalize the definition of expansion concepts to include con-

cepts that are obtained from sources other than the retrieval corpus, as is the standard

practice in much of the previous work (Lavrenko and Croft 2003; Cao et al. 2008;

Metzler and Croft 2005; Metzler and Croft 2007a). While any combination

of terms can serve as an expansion concept, following Chapter 6, in this section we fo-

cus on expansion with single terms, mainly for ensuring the efficiency of the expansion

concept selection process.

Let S be a set of external textual sources that can be used for query expansion

via pseudo-relevance feedback (see Section 7.3 for an exact defintion of these sources).

To incorporate expansion terms from the external sources in the set S, we first obtain

a large pool of potential expansion terms associated with each information source

S ∈ S using pseudo-relevance feedback. To this end, we first rank documents in the

source S using the ranking function scWSD(Q,D), defined above, which utilizes only

explicit query concepts and their corresponding weights.

Then, each term in the pseudo-relevant set of documents RS (top ranked docu-

ments in source S) is assigned an expansion score based on the latent concept expan-

sion weighting described in Equation 6.1.

ψ(κ, S) =
∑

D∈RS

exp
(

γ1scWSD(Q,D) + γ2f(κ,D)− γ3 log
tfκ,S

|S|

)

, (7.1)

where γi’s are free parameters.

Recall from Section 6.2 that the latent concept expansion score ψ(κ, S) is a linear

combination of three key components: document relevance (manifested by the docu-

ment score sc (Q,D)), weight of the term in the pseudo-relevant set RS (manifested

by the matching function f (κ,D)), and the inverse of the frequency of the term in
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the source S (− log
tfκ,S
|S|

), which dampens the scores of very common terms, thereby

improving the quality of the expansion terms.

Finally, at most 100 terms with the highest value of ψ(κ, S) per source S are

added to the initial structure expansion structure E0S, which contains the initial pool

of expansion terms associated with source S. The large number of expansion terms in

the initial pool E0S ensures that it is large enough for selecting diverse expansion terms

at the second stage. Note that it is guaranteed that the total number of expansion

terms in all sources is bounded by 100|S|.

Once the initial expansion term structures E0S are obtained, we assign a weight to

each of the unique expansion terms in these structures

κ ∈
∪

S∈S

E0S,

using the weighted combination of expansion scores

wMSE(κ) =
∑

S∈S

λ(S)I(κ, S), (7.2)

where I(κ, S) is an indicator function defined as

I(κ, S) =















ψ(κ, S) if κ ∈ E0S

0 else

According to Equation 7.2, the weight wMSE(κ) is expressed by a weighted combi-

nation of expansion scores, which are defined over a set of sources S. Each expansion

score ψ(κ, S) is associated with an expansion term κ and is computed over a source

S ∈ S. To handle missing terms, if κ is not one of the top 100 terms selected from

the source S, we set I(κ, S) = 0.
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To ensure efficient query expansion, we retain only the top 10 terms from the set

of expansion terms
∪

S∈S E
0
S, based on Equation 7.2. We refer to this small set of

expansion terms as EQ.

The hypergraphs HMSE
FULL and HMSE depicted in Figure 7.2 graphically represent

this expansion process. The full hypergraph HMSE
FULL (Figure 7.2(a)) includes all the

expansion terms from the set of all the sources
∪

S∈S E
0
S. For efficiency reasons, only

a small set of highest weighted expansion terms encoded in the structure EQ in the

hypergraph HMSE (Figure 7.2(b)) is used for ranking the documents in the collection.

Following these definitions of the explicit concept weights and the expansion term

weights, the ranking function for the multiple source expansion (MSE) approach be-

comes:

scMSE(Q,D) , scWSD(Q,D) +
∑

κ∈EQ

wMSE(κ)f(κ,D) =

=
∑

σ∈{QT,PH,PR}

∑

ϕ∈Φ

λ(ϕ,σ)
∑

κ∈σ

ϕ(κ)f(κ,D) +

+
∑

S∈S

λ(S)
∑

κ∈EQ

I(κ, S)f(κ,D). (7.3)

To complete the derivation of this ranking function, in Section 7.3 we describe the

set of external sources S used for query expansion. Then, in Section 7.4 we describe

the pipeline optimization process for optimizing the weights Λ in Equation 7.3.

7.3 Information Sources

In this section, we provide a detailed description of the set of external informa-

tion sources S used for query expansion. As described in Section 7.2, we make no

assumptions about the internal structure of these sources, and treat them as un-

structured textual corpora. We use these external information sources to perform

pseudo-relevance feedback for computing the expansion scores associated with the

expansion terms in the structure EQ.
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Information Source Unit of Retrieval
Retrieval Corpus Single document
Wikipedia Corpus Single article
ClueWeb-B Anchor Text Single line of anchor text

(as defined by the < a > HTML tag)
ClueWeb-B Heading Text Single line of heading text

(as defined by the < h∗ > HTML tags)

Table 7.2. External information sources used in the multiple source expansion (MSE)
method.

Retrieval Corpus

chemical, weapon, toxic, convention, substance, gas, destruc-
tion, product, plant, mirzayanov, . . .
Wikipedia Corpus

chemical, agent, gas, weapon, warfare, war, poison, mustard,
disseminate, nerve, . . .
ClueWeb-B Anchor Text

toxic, chemical, cigarette, tobacco, terrorist, tts, weapon,
leach, terror, wwf, . . .
ClueWeb-B Heading Text

toxic, chemical, weapon, terrorist, terror, assess, biology, be-
havior, incinerate, emission, . . .
MSE

weapon, agent, gas, russia, convention, mustard, warfare, sub-
stance, destruction, product, . . .

Table 7.3. Comparison between the lists of expansion terms derived from the in-
dividual external information sources for the query “toxic chemical weapon” and the
combined list produced by the MSE method.
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It is theoretically possible to use the same information sources for deriving both

the set of importance features described in Section 3.4.2 and the expansion scores.

In practice, however, a single external source is commonly better suited for only one

of these tasks. For instance, the Google N-grams source (a large collection of web

n-gram counts) is useful for concept weighting, but not for query expansion. On the

other hand, an entire external document collection such as Wikipedia is more suitable

for query expansion.

Accordingly, in Table 7.2 we provide a list of external information sources used for

query expansion along with a brief description of their utilization. Table 7.2 defines

a unit of retrieval, which is used for pseudo-relevance feedback from the source. As

external sources for query expansion, we use, in addition to the retrieval corpus, the

heading text and the anchor text extracted from the TREC collection ClueWeb-B ,

a large, publicly available web collection used as a dataset in our experiments (see

Chapter 4 for more details about this collection), as well as an English Wikipedia

corpus.

As an example of the role that the external sources may play in query formulation,

Table 7.3 demonstrates the expansion terms derived from the external information

sources for the query “toxic chemical weapon”. The MSE column in Table 7.3 is the

output of the process of expansion with multiple information sources described in

Section 7.2. The MSE column includes expansion terms which are more relevant and

address more of the query aspects than those produced by any individual source.

For instance, MSE expansion includes the terms russia, agent, mustard and warfare,

which do not appear in the top terms obtained via pseudo-relevance feedback on the

retrieval corpus. As a result, in this case, the MSE approach improves the retrieval

effectiveness by 33% over a method that uses latent concept expansion with the

retrieval corpus, and by 14% over a method that uses latent concept expansion with

Wikipedia.
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MSEOptimization(Λ0)

1: Λ0
Q ← Λ0

{QT,PH,PR}

2: Λ0
S ← {λ

0
S : S ∈ S}

3: ⟨M,ΛQ⟩ ← CoordinateAscent(∅,Λ0
Q)

4: ⟨M,ΛS⟩ ← CoordinateAscent(ΛQ,Λ
0
S)

5: return ⟨M,ΛQ ∪ ΛS⟩

Figure 7.3. Pipeline optimization of the multiple source expansion method.

7.4 Parameter Optimization

Similarly to the case of the parameterized query expansion with the retrieval

corpus (discussed in Section 6.4), the optimization of the multiple source expansion

is performed in several stages. Therefore, for the optimization of the free parameters Λ

in Equation 7.3 we employ an optimization procedure, which is based on the pipeline

optimization discussed in Section 3.5.3. This procedure is outlined in Figure 7.3.

First, we denote the initial parameterization of the explicit concepts (concepts in

the QT, PH, and PR structures) Λ0
Q, and the initial parameterization of the expansion

sources Λ0
S . Then, we optimize the weights of the explicit query concepts alone, using

the coordinate ascent algorithm (see Figure 3.3). This process yields an optimized

parameterization ΛQ, which is then used to obtain a list of expansion terms from each

of the information sources in S using pseudo-relevance feedback.

As the initial parameterization of the expansion sources, we set

λ(Retrieval Corpus) = 1,

and the rest of the parameters to 0. This ensures that the starting point of our

optimization is exactly the latent concept expansion approach with optimized explicit

concept weights. In this manner, if the additional sources are deemed not to be helpful

for expansion, they will not contribute any expansion terms to the expansion structure

EQ used in the ranking function. Once all the expansion terms are collected, the set
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of free parameters associated with the expansion sources in the set S is optimized

using the coordinate ascent algorithm.

It is computationally infeasible to use all the expansion terms from all the expan-

sion sources at each iteration of the coordinate ascent algorithm. To alleviate this

problem to some degree, and to make the optimization process more efficient, at each

iteration of the coordinate ascent algorithm, we include in the expanded queries at

most 10 expansion terms with the highest weight (as determined by the parameteri-

zation Λi
S at the i-th iteration of the coordinate ascent algorithm), which is referred

to as the EQ structure in the HMSE representation in Figure 7.2(b).

The optimization phase concludes after the second round of the coordinate ascent

algorithm is completed. At this point, the entire set of weights Λ is optimized in

terms of the target retrieval metricM.

In this way, we ensure that the parameters Λ in the MSE ranking function (Equa-

tion 6.3) are optimized to deliver both the best selection of the expansion terms and

the most effective retrieval performance of the expanded queries. As our experimental

results demonstrate, this leads to a significant improvement over the state-of-the-art

non-parameterized retrieval methods that perform query expansion such as LCE, as

well as the parameterized query expansion method (PQE) described in Chapter 6 that

uses only a single expansion source.

7.5 Evaluation

In this section, we report the results of the empirical evaluation of query expan-

sion using multiple information sources (MSE) described in the previous section. We

compare the MSE method both to retrieval baselines that do not employ query expan-

sion (Section 7.5.1) and to the latent concept expansion (LCE) and the parameterized

query expansion (PQE) methods (Section 7.5.2). Then, in Section 6.5.3 we examine

the robustness of the MSE retrieval method across queries.
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⟨title⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

SD 36.20 25.85 53.82 30.90 31.04 19.37
WSD 36.47 26.09 54.09 31.68∗ 31.25 20.23∗

MSE 38.80∗
† 30.49∗

† 56.59∗
† 34.35∗

† 39.17∗
† 23.96∗

†

⟨desc⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

SD 35.04 25.62 51.11 27.97 22.97 12.99
WSD 37.05 27.41∗ 52.21 29.36∗ 25.31 14.56∗

MSE 38.90∗
† 30.68∗

† 54.46∗ 31.10∗
† 26.87∗ 15.23∗

Table 7.4. Comparison of the parameterized query expansion methods to the non-
expanded baselines based on the binary relevance metrics for the ⟨title⟩ and the ⟨desc⟩
queries. Best result in the column is bolded. Statistically significant differences with
the SD method and the WSD method are marked by ∗ and †, respectively.

All the initial retrieval parameters in the experiments reported in this section

are set to the default Indri values, which reflect the best-practice settings. The

parameter optimization and the evaluation are done using 3-fold cross-validation. The

statistical significance of the differences in the performance of the retrieval methods

is determined using a Fisher’s randomized test with 10,000 iterations and α < 0.05.

The expansion methods LCE PQE, and MSE, unless otherwise noted, use the 25 top

retrieved documents for constructing the pseudo-relevant set R and the 10 highest

weighted expansion terms for query expansion. This ensures that all the retrieval

methods are relatively efficient, even for large-scale web collections.

We measure the performance using standard retrieval metrics for TREC corpora,

as described in Section 4.2. For metrics that use binary relevance judgments, we

use precision at the top 20 retrieved documents (P@20) and mean average precision

across all the queries (MAP ). For metrics that use graded relevance judgments, we

use normalized discounted cumulative gain and expected reciprocal rank at rank 20

(NDCG@20 and ERR@20, respectively).
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⟨title⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

SD 11.69 41.78 17.09 43.23 8.80 21.36
WSD 11.68 42.02 17.34 44.06 9.41 22.20
MSE 11.86 44.13∗

† 17.33 44.91 9.94 25.76∗
†

⟨desc⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

SD 11.76 40.91 15.73 40.97 7.58 17.11
WSD 12.04 42.86∗ 16.52∗ 42.47∗ 8.58 19.58∗

MSE 12.62∗
† 44.86∗

† 16.67 43.13∗ 8.59 20.32∗

Table 7.5. Comparison of the parameterized query expansion methods to the non-
expanded baselines based on the graded relevance metrics for the ⟨title⟩ and the ⟨desc⟩
queries. Best result in the column is bolded. Statistically significant differences with
the SD method and the WSD method are marked by ∗ and †, respectively.

7.5.1 Comparison with the Non-Expanded Baselines

In this section, we compare the retrieval effectiveness of query expansion with

multiple information sources MSE, which performs both concept weighting and query

expansion to the performance of the methods that perform query weighting alone. The

first baseline is the sequential dependence model (SD) first proposed by Metzler

and Croft (2005). The second baseline is the weighted variant of the sequential

dependence model (WSD), which is based on the parameterized concept weighting

approach (refer to Chapter 5 for the detailed description and the empirical comparison

of these two retrieval methods).

Table 7.4 and Table 7.5 compare the performance of the above baselines (SD

and WSD) and query expansion with multiple information sources MSE. Both tables

unequivocally demonstrate the effectiveness of query expansion with multiple sources.

In all but one comparisons, MSE is more effective than the baselines that do not

perform query expansion, and in many of the cases (especially in the case of the

MAP metric) its improvements are statistically significant. These improvements are

consistent across retrieval metrics, corpora and query types.
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⟨title⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

LCE 38.37 28.89 54.26 32.59 33.07 20.90
LCE-WP 38.94 28.93 53.75 31.90 39.22∗

† 23.48∗†
PQE 39.12 29.06 55.37∗† 33.64∗† 31.98† 20.83†
MSE 38.80 30.49∗

†‡ 56.59∗
†‡ 34.35∗

†‡ 39.17∗‡ 23.96∗
‡

⟨desc⟩ Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

LCE 37.29 28.32 51.95 30.34 23.70 14.09
LCE-WP 38.33 29.08 51.31 28.70 26.56 14.52
PQE 38.35 29.23∗ 53.89∗† 31.35∗

† 24.84† 15.02
MSE 38.90∗ 30.68∗

†‡ 54.46∗
† 31.10† 26.87∗

†‡ 15.23∗
†‡

Table 7.6. Comparison of the parameterized query expansion methods to the query
expansion baselines based on the binary relevance metrics for the ⟨title⟩ and the ⟨desc⟩
queries. Best result in the column is bolded. Statistically significant differences with
the LCE method, the LCE-WP method and the PQE methods are marked by ∗, †, and ‡
respectively.

Recall that in the Section 6.5.1, we have shown that parameterized query expan-

sion using the retrieval corpus fails to improve retrieval effectiveness over the SD and

the WSD methods for the ClueWeb-B corpus (refer to Table 6.3 and Table 6.4 for

detailed comparisons). In contrast, MSE method is always more effective than the two

non-expanded baselines both for binary and graded metrics. The effectiveness im-

provements for the ⟨title⟩ queries (as measured by the MAP metric) are statistically

significant. This observation showcases the importance of using external informa-

tion sources in the pseudo-relevance feedback process, when the retrieval corpus is a

large-scale noisy web collection.

7.5.2 Comparison with the Query Expansion Techniques

After comparing the effectiveness of the MSE method against methods that do not

perform query expansion, in this section we focus on comparing its performance to

that of current state-of-the-art query expansion methods.
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⟨title⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

LCE 11.84 43.77 16.65 43.26 8.82 21.95
LCE-WP 12.22 44.63 17.47 43.98 9.69 25.43
PQE 11.82 44.23 17.27 44.58 8.84 21.94
MSE 11.86 44.13 17.33 44.91 9.94 25.76∗

‡

⟨desc⟩ Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

LCE 12.08 42.59 15.88 40.48 8.54 17.90
LCE-WP 12.55 44.38 16.02 41.45 8.67 19.90
PQE 12.35 44.24∗ 16.89∗ 43.06∗ 8.78 19.01
MSE 12.62∗ 44.86∗ 16.67 43.13∗ 8.59 20.32∗

Table 7.7. Comparison of the parameterized query expansion methods to the query
expansion baselines based on the graded relevance metrics for the ⟨title⟩ and the
⟨desc⟩ queries. Best result in the column is bolded. Statistically significant differences
with the LCE method, the LCE-WP method and the PQE methods are marked by ∗, †,
and ‡ respectively.

First, we make use of the latent concept expansion method, which was shown to

be a state-of-the query expansion method that uses a single collection (Metzler and

Croft 2007a; Lang et al. 2010). See Section 6.2 for a detailed description of the

LCE method.

As baselines, we implement two variants of latent concept expansion. The first

baseline is denoted LCE. It is the standard version of latent concept expansion, which

performs the pseudo-relevance feedback on the retrieval corpus.

The second baseline is denoted LCE-WP. LCE-WP performs the pseudo-relevance

feedback on Wikipedia, rather than the retrieval corpus. LCE-WP is based on some

recent work that shows that query expansion using Wikipedia corpus can be beneficial,

especially for short ambiguous queries over large web collections (Li et al. 2007; Xu

et al. 2009).

In addition to the LCE-based baselines, we use the parameterized query expansion

method described in Chapter 6 as a baseline. Recall that the PQE method, combines

explicit concept weighting and expansion term weighting in a unified framework that
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uses external information sources. The main difference between the PQE and the MSE

methods, is that the former uses the external sources solely for weighting purposes,

while the latter uses them also for expansion term selection.

Table 7.6 and Table 7.7 compare the effectiveness of the three baselines described

above (LCE, LCE-WP and PQE) to the proposed MSE method using binary and relevance

metric, respectively. This comparison highlights the different positive aspects of MSE

method.

The main observation from Table 7.6 and Table 7.7 is that MSE is in many cases

more effective than any of the three baselines (e.g., it is the most effective method

in terms of MAP in all but one comparisons). In contrast to the baselines, the

performance of MSE is stable across corpora and query types. In comparison, the

performance of the baselines is not as consistent. For instance, LCE-WP is more ef-

fective than LCE for the Robust04 and ClueWeb-B corpora, but less effective for the

Gov2 corpus. Similarly, PQE outperforms LCE-based baselines for Robust04 and Gov2

corpora, but is not as effective for the ClueWeb-B corpus.

In addition, Table 7.6 and Table 7.7 clearly demonstrate the importance of using

external information sources for both concept weighting and expansion term selection.

Compared to PQE, which uses the external sources of information solely for weighting

purposes, MSE achieves significantly better performance on all metrics. This is espe-

cially evident in the case of the ClueWeb-B corpus, for which expansion using the

retrieval corpus attains only marginal gains. For the ClueWeb-B corpus, PQE achieves

merely a 3% gain over the WSD baseline for ⟨title⟩ queries, while MSE achieves over 18%

gain. It is clear that in this case, using multiple sources for selecting the expansion

terms, in addition to concept weighting, is highly beneficial.

Finally, Table 7.6 and Table 7.7 shows that the synergy of concept weighting and

expansion term selection using external sources as performed by the MSE is superior to

the ad-hoc approach that simply uses an external corpus (e.g., Wikipedia) for query
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Figure 7.4. Varying the number of expansion terms (ClueWeb-B corpus). Dot-
ted line indicates the performance of LCE[10]. Dashed and solid lines represent the
performance of LCE-WP[N] and MSF[N], respectively.

expansion. MSE is more stable than LCE-WP across all collections, and is more effective

even for the ClueWeb-B corpus, where expansion with Wikipedia was shown to be a

highly effective strategy (Bendersky et al. 2011; McCreadie et al. 2010).

7.5.3 Number of Expansion Terms

Massive query expansion with tens or even hundreds of terms, as is often done

in TREC evaluation (Cao et al. 2008; Diaz and Metzler 2006) is not suitable for

the scenario of web search, where the size of the retrieval corpus is large, and users

expect low query latencies. Accordingly, in this section we explore the effect of query

expansion with very few expansion terms, to demonstrate the scalability of the MSE

method for web corpora.

In Figure 7.4 we plot the effectiveness (in terms of MAP ) of query formulation

methods that have the best performance for the ClueWeb-B corpus – LCE-WP and

MSE– when using the 3, 5 and 10 highest weighted expansion terms. For comparison,

we also plot the effectiveness of a standard query expansion method, LCE with 10

terms.
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⟨title⟩ α-nDCG@20 S-Recall@20 MAP-IA
WSD 22.36 46.04 9.20
PQE 21.07 42.47 9.39
LCE-WP 24.51 46.91 11.00
MSE 25.85∗

†‡ 48.94†‡ 11.25∗
†

Table 7.8. Result diversification performance (ClueWeb-B). Statistically significant
difference of MSE over the baselines are marked using ∗, †, and ‡, for WSD, PQE and
LCE-WP baselines, respectively. Best result per column is marked by boldface.

First, Figure 7.4 clearly demonstrates the superiority of both LCE-WP and MSE

compared to LCE, even with fewer expansion terms. We can also see from Figure 7.4

that the superiority of the proposed MSE method over the LCE-WP method, which

uses Wikipedia for query expansion, is not limited to the scenario in Table 7.6 and

Table 7.7, where 10 expansion terms are used. The effectiveness gains of MSE over

LCE-WP are consistent with minimal query expansion (3 or 5 additional terms) as well.

For instance, when only 3 terms are used for query expansion, MSE achieves around

8% and 3% improvement over LCE-WP for ⟨title⟩ and ⟨desc⟩ queries, respectively.

Overall, the results in Figure 7.4 showcase the ability of the MSEmethod to produce

both effective and compact queries, which could potentially scale to real world web

search scenarios.

7.5.4 Impact on result diversification

Recently, result diversification in web search has become an active research topic

(Agrawal et al. 2009; Clarke et al. 2008; Clarke et al. 2010; Santos et al.

2010; Santos et al. 2011). Since web search queries are often underspecified and/or

ambiguous, diversifying the search results may assist users with varying intents in

finding relevant information in a single ranked list returned by the search engine.

Due to the research interest in this problem, result diversification was chosen as a

search task during the 2009 and 2010 TREC Web Tracks (Clarke et al. 2010).
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Effective result diversification is often achieved by inter-query approaches. These

approaches combine results from queries that are found to be related to the original

user query (e.g., through access to the query suggestions proposed by commercial

search engines (Santos et al. 2010; Santos et al. 2011)). However, even in the

inter-query approaches, the retrieval effectiveness and diversity performance of each

single query is important for obtaining the optimal diversification results (Santos

et al. 2011).

Therefore, in this section we examine intra-query result diversification, i.e., the

diversity performance that can be achieved by using the original user query alone.

To this end, we compare the performance of the three best-performing baselines from

Table 6.3 and Table 6.6 (WSD, PQE and LCE-WP) to that of the MSE method in terms of

three standard diversity metrics. These diversity metrics include metrics that examine

the diversity at the top ranks (α-NDCG and subtopic recall at rank 20) (Clarke

et al. 2008; Clarke et al. 2010), as well as a metric that measures the diversity of

the entire ranked list (intent-aware mean average precision) (Agrawal et al. 2009).

Table 7.8 demonstrates the comparison of the result diversification performance

of the different methods on the ⟨title⟩ queries for the ClueWeb-B collection2. Over-

all, MSE achieves the best diversity performance, especially for the diversity at the

top ranks, where it achieves over 6% improvement over LCE-WP, the best-performing

baseline.

In the context of search result diversification, it is interesting to note that previous

work suggested that query expansion with the retrieval corpus may reduce diversity

at top ranks (Clarke et al. 2008). The comparison between the WSD and the PQE

baselines in Table 7.8 is in line with this finding. In contrast to the expansion with

the retrieval corpus alone, the proposed MSE method helps to improve the diversity

2We do not include the ⟨desc⟩ queries in our diversification performance analysis, since
these are verbose and non-ambiguous queries that fully specify the user intent.
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% queries (50+% gain) % queries (50+% loss) % gain
⟨title⟩ 13.7 4.4 8.5
⟨desc⟩ 19.6 8.1 6.3

Table 7.9. Average effect of the parameterized query expansion (MSE) method on
the ⟨title⟩ and the ⟨desc⟩ queries across all the TREC corpora (as measured by the
MAP metric).

of the search results, since it combines expansion terms from different information

sources.

7.5.5 Robustness

In this section, we analyze the robustness of the MSE method, compared to the

LCE method. Similarly to Section 6.5.3, we define the robustness of the method as

the number of queries improved or hurt (and by how much – in terms of MAP ) as

the result of the application of the method. A highly robust expansion technique will

significantly improve many queries and only minimally hurt a few.

Figure 7.5 provides an analysis of the robustness of LCE and MSE for the ⟨desc⟩

queries. The histograms in Figure 7.5 show, for various ranges of relative decreases

or increases in the MAP metric, the number of queries that were hurt or improved

with respect to a standard bag-of-words baseline, query-likelihood (QL), which is the

default retrieval method in Indri. This is in line with the measurement of robustness

done by Metzler and Croft (2007a).

Figure 7.5 unequivocally demonstrates that the MSE method is more robust com-

pared to LCE method. For instance, for the Robust04 corpus, MSE improves the per-

formance of 72% of the queries w.r.t. QL, compared to 66% of the queries improved

by the LCE. Similarly, for the Gov2 corpus, MSE improves the performance of 73% of

the queries w.r.t. QL, compared to 65% of the queries improved by the LCE method.

For the ClueWeb-B corpus these improvements are 58% and 53%, respectively.
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Figure 7.5. Robustness of the LCE and MSE methods for the ⟨desc⟩ queries with
respect to the QL method.
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In addition, the MSE method is much less likely to significantly hurt the perfor-

mance, compared to the LCE method for the Robust04 and the Gov2 corpora. For the

Robust04 corpus, MSE decreases performance by more than 50% for only 4% of the

queries, compared to the 7% of the queries hurt by the LCE method. For the Gov2

corpus, MSE decreases performance by more than 50% for only 5% of the queries,

compared to the 10% of the queries hurt by the LCE method.

For the ClueWeb-B corpus, MSE decreases performance by more than 50% for

slightly more queries than LCE: 17% of the queries, compared to 16%. However, this

difference is more than offset by the percentage of queries for which the MSE method

improves performance by more than 50%: 33% of the queries, compared to 20% of

the queries improved to the same degree by the LCE method.

Finally, it is interesting to examine the relative gains from using the parameterized

query expansion compared to the latent concept expansion across all corpora for the

⟨title⟩ and the ⟨desc⟩ queries. Recall that in the previous chapters, we found that

while parameterized concept weighting and expansion is important for all queries, it

benefits the longer, more verbose queries to a larger degree due to the fact that they

tend to include concepts that have varying importance for expressing the query intent

(see Table 5.3 and Table 6.9 for detailed comparisons).

Table 7.9 examines the difference in effectiveness gains compared to the LCEmethod

(as measured by MAP ) as a result of applying the MSE method to both ⟨title⟩ and

⟨desc⟩ queries averaged across the three corpora. Table 7.9 clearly demonstrates

that query expansion with multiple information sources is beneficial for both types of

queries. While, in general, it significantly improves more ⟨desc⟩ queries, the overall

gain in retrieval performance is comparable among the ⟨title⟩ and ⟨desc⟩ query types.

117



7.6 Summary

In this chapter we described the process of parameterized query expansion using

multiple information sources. In Section 7.2 we modeled the multiple source parame-

terized query expansion using query hypergraphs. Then, in Section 7.3, we described

the information sources used for query expansion in this chapter. In Section 7.4,

we outlined the optimization of the free parameters in the multiple source query ex-

pansion. In Section 7.5, we reported the results of the empirical evaluation of query

expansion using multiple information sources.

This chapter concludes the exploration of query expansion with query hypergraphs

that we began in Chapter 6. This exploration led to two important findings. First, in

Chapter 6 we found that the parameterized query expansion approach is significantly

more effective than the current state-of-the-art query expansion techniques such as

latent concept expansion (Metzler and Croft 2007a). Second, in this chapter, we

found that the effectiveness of the parameterized query expansion with query hyper-

graphs can be further improved by incorporating evidence from external information

sources such as Wikipedia or anchor text.

In the next chapter, we return to examining the retrieval performance of query hy-

pergraphs that do not utilize any query expansion. In particular, in the next chapter

we focus on modeling parameterized concept dependencies using query hypergraphs.

The parameterized concept dependencies can model dependencies between arbitrary

concepts in the query, and assign weights to these dependencies. This is an important

advance compared to the current retrieval models that can only model dependencies

between single query terms. As we show in the next chapter, both parameterized

concept weighting and parameterized concept dependencies can be integrated into a

unified retrieval framework based on the query hypergraph representation.
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CHAPTER 8

PARAMETERIZED CONCEPT DEPENDENCIES

8.1 Introduction

In the previous chapters, we focused on the incorporation of the parameterized

concept weighting into the retrieval function. The weighting was applied to arbitrary

concepts, or term dependencies, rather than single query terms. Some additional re-

cent examples of retrieval models that incorporate term dependencies include, among

others, Markov random fields (Metzler andCroft 2005), linear discriminant model

(Gao et al. 2005), dependence language model (Gao et al. 2004), quasi-synchronous

dependence model (Park et al. 2011), and positional language model (Lv and Zhai

2009).

However, both the previous chapters of this dissertation, and most of the previous

work make the assumption that there are no further dependencies between the con-

cepts in the query, and treats them independently. This approach ultimately leads to

bag-of-concepts retrieval models.

In this chapter1, we demonstrate that the query hypergraphs can remedy this

shortcoming of the current retrieval models that incorporate term dependencies.

Based on this observation, we propose several novel retrieval methods that take a

further step toward a more accurate modeling of the dependencies between the query

terms. Rather than modeling the dependencies between the individual query terms,

our retrieval methods model dependencies between arbitrary concepts in the query.

1This chapter is partly based on the work to appear at the 35th Annual ACM SIGIR Conference
(Bendersky and Croft 2012).
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...linking law enforcement duties
to the definition of “law enforce-

ment officer” for retirement pur-
poses....must be handled within the
context of...FEPCA and law en-

forcement retirement law and regu-
lations....Adding a discussion of these
issues would add unnecessarily to the
complexity...of information already
provided...definitions of “law en-

forcement officer” in these regula-
tions should provide guidance...

...Simi Valley, West Covina and
Los Angeles police departments were
among the first law enforcement

agencies to receive money through
the forfeiture program....a narcotics-
sniffing dog in a Simi Valley police in-
vestigation...led to the largest seizure
of cocaine ever by authorities from
Ventura County...dog’s efforts are ex-
pected to yield a substantial amount
of money...for the 21-officer depart-
ment...

(a) (b)

Figure 8.1. Excerpts from (a) the top document retrieved by the sequential de-
pendence model, and (b) the top document retrieved using a query hypergraph in
response to the query: “Provide information on the use of dogs worldwide for law
enforcement purposes”. Non-stopword query terms are marked in boldface.

As described in Section 3.1, we broadly define a query concept as a syntactic ex-

pression that models a dependency between a subset of query terms. Query concepts

may model a variety of linguistic phenomena, including n-grams, term proximities,

noun phrases, and named entities. Therefore, a dependency between query concepts

represents a dependency between term dependencies, i.e., a higher-order term depen-

dency. In the remainder of this chapter, we shall use the definitions “higher-order

term dependency” and “concept dependency” interchangeably.

To the best of our knowledge, there is little prior work on modeling this type of

higher-order term dependencies for information retrieval. Most retrieval models limit

their attention to either pairwise term dependencies (Cummins and O’Riordan

2009; Lv and Zhai 2009) or, at most, dependencies between multiple terms (Bendersky

and Croft 2008; Metzler and Croft 2005). In contrast, the query hypergraphs

can model dependencies between arbitrary concepts, e.g., a dependency between a

phrase and a term, via the inclusion of additional hyperedges. We hypothesize that an

accurate modeling of concept dependencies is especially important for verbose natural
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language queries. This is due to the fact that the grammatical complexity of these

queries often challenges the capabilities of the current retrieval models (Bendersky

and Croft 2008; Kumaran and Carvalho 2009).

As an example, consider the verbose query used as a ⟨desc⟩ query in TREC topic

§426:

“Provide information on the use of dogs worldwide for law enforcement

purposes.”

Figure 8.1(a) shows an excerpt from the top document retrieved by a sequential

dependence model (Metzler and Croft 2005) – a state-of-the-art retrieval model

that incorporates term dependencies – in response to this query. As evident from the

excerpt in Figure 8.1(a), the top-retrieved document is non-relevant with respect to

the query. Even though it contains many instances of the phrase “law enforcement”

as well as the terms provided and information it does not mention the use of dogs.

On the other hand, an excerpt from the document in Figure 8.1(b) clearly indi-

cates the relevance of the top document retrieved by our method with respect to the

query. Even though this excerpt matches less of the query terms than the excerpt in

Figure 8.1(a), it contains a relationship between the term dog and the phrase “law

enforcement”, which is highly indicative of its relevance. This relationship cannot be

modeled without accounting for higher-order term dependencies.

As Figure 8.1 shows, the evidence of the concepts co-occurring within a passage of

text is a strong indicator of their dependency. This is somewhat akin to term depen-

dencies, which are often modeled based on the frequency of the terms co-occurring

next (or close) to each other in the document (Metzler and Croft 2005; Tao and

Zhai 2007; Lv and Zhai 2009).

In the case of concept dependency, however, instead of relying on the entire doc-

ument, we only examine a single document passage that is deemed to be the most

relevant with respect to the query. This focused evidence can distinguish between

121



relevant documents and documents which simply contain many repeated concept

instances, as in Figure 8.1(a). As we show in the next section, this approach is remi-

niscent of the passage retrieval models that often make use of the evidence from the

highest-scoring document passage (Bendersky and Kurland 2008; Callan 1994;

Cai et al. 2004; Kaszkiel and Zobel 1997; Wilkinson 1994).

In contrast to the approach presented in this chapter, most passage retrieval meth-

ods are based on a conjunctive retrieval model and treat a query as a bag of words.

However, as the excerpts in Figure 3.2 demonstrate, such a simple conjunctive re-

trieval model is not sufficient, especially for verbose, natural language queries.

Instead, the proposed retrieval framework distinguishes between the concepts and

the dependencies that are crucial for conveying the query intent, and the concepts

and the dependencies of lesser importance. For instance, in the case of the query in

Figure 8.1, the dependency (dog, “law enforcement”) in Figure 8.1(b) is crucial for ex-

pressing the query intent, while the dependency (information and “law enforcement”)

in Figure 8.1(a) is not.

To summarize, unlike any of the current retrieval models, the retrieval framework

proposed in this chapter integrates three main characteristics that we believe are cru-

cial for improving the effectiveness of retrieval with verbose queries. First, it models

arbitrary term dependencies as concepts. Second, it uses passage-level evidence to

model the dependencies between these concepts. Finally, it assigns weights to both

concepts and concept dependencies, proportionate to the estimate of their impor-

tance for expressing the query intent. In this chapter, we show that by integrating

these characteristics, the proposed retrieval framework can significantly improve the

effectiveness of several current state-of-the-art retrieval models.

As in the rest of this dissertation, the proposed retrieval framework is based on

a query representation using a hypergraph structure – a generalization of a graph,

where an edge can connect more than two vertices. A vertex in a query hypergraph
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corresponds to an individual query concept. The vertices are grouped by structures,

which model various linguistic phenomena. For instance, a structure can group to-

gether terms, n-grams or noun phrases. Finally, any subset (rather than just a pair

as in a standard graph) of vertices can be connected via a hyperedge, which models

concept dependencies.

In this chapter, we use a query hypergraph representation that includes a global

hyperedge to derive a ranking function that incorporates concepts and concept de-

pendencies in a principled manner, based on the factorization of the hypergraph. We

then derive several possible instantiations of this query hypergraph, which incorporate

different structures and parameterization approaches.

The remainder of this chapter is organized as follows. Parameterized concept

dependencies are inspired by passage-based retrieval method that are described in

Section 8.2. In Section 8.3, we show how parameterized concept dependencies can

be modeled using query hypergraphs. In Section 8.4, we describe the optimization

process of query hypergraphs with concept dependencies. In Section 8.5, we con-

duct retrieval experiments to demonstrate the superiority of the retrieval models that

integrate concept dependencies to their counterparts that treat the query concepts

independently. We conclude the chapter in Section 8.6.

8.2 Passages in Information Retrieval

The most commonly used form of information retrieval is document retrieval, i.e.,

retrieving an entire document (e.g., a news article or a web page) in response to a

search query. However, there are some potential cases in which using only the most

relevant document portions may be of value. These document portions are commonly

referred to as passages in information retrieval (Bendersky andKurland 2008; Liu

and Croft 2002; Callan 1994).
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Passages can be used in two ways in information retrieval. First, we can return

the passages themselves in response to the search query. Alternatively, passages can

be used to retrieve documents. In both cases, the retrieval task is to find passages

that might pertain to a query. In the second case, however, these passages are used

to evaluate the relevance of their ambient documents. In this section, we focus on

the second case.

Passage-based evidence can be beneficial in information retrieval applications in

several cases. First, it can be useful when only a small portion of a relevant document

contains information that is actually relevant to the query. For example, consider a

comprehensive book on the topic of information retrieval, wherein only a single section

discusses passage-based retrieval. If the entire book is considered as an indivisible

monolithic document, this section will have very limited influence on the overall

document relevance score for a search query discussing the subject of passage-based

retrieval.

Second, passage-based evidence can discover dependencies between the query con-

cepts that go beyond exact phrases or proximity matches. For instance, consider the

case of the query in Figure 8.1. While the concept pair (law enforcement, dogs) can-

not be exactly matched as a phrase in the top-retrieved document in Figure 8.1(b),

the fact that the two concepts co-occur within the confines of a passage that has a

high query relevance score serves as important evidence of document relevance. This

can especially benefit verbose queries that often contain concept dependencies that

go beyond sequential phrases.

The main challenges in using passage-based evidence in document retrieval are (a)

the identification of passage boundaries, and (b) the integration of passage evidence

in the retrieval model. In the remainder of this section, we will discuss these two

challenges.
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Overlapping Passages

Figure 8.2. Overlapping passage identification.

8.2.1 Passage Identification

Passage types can be roughly classified into three main groups (Callan 1994;

Kaszkiel and Zobel 2001): discourse passages, semantic passages and window

passages.

Discourse passages are based on the document markup; examples include sen-

tences, paragraphs or sections boundaries. Discourse passages have been found to

work well for highly structured and edited corpora with clearly defined boundaries

(Cai et al. 2004). However, in more heterogeneous collections, discourse passages do

not contribute to consistent improvements in retrieval performance (Callan 1994).

Semantic passages are based on shifts of topic within a document. One of the

most well known techniques to derive semantic passages is TextTiling (Hearst 1997).

TextTiling groups adjacent blocks of text with high similarity into passages. Blocks

are derived from sentence punctuation, and the similarity measure is the cosine sim-

ilarity between the vector-space representation of pairs of adjacent blocks.

Window passages are passages that are based on fixed (or variable) number of

words. This simple passaging technique was shown in some cases to be at least as

effective as other techniques for passage identification for document retrieval (Callan

1994; Kaszkiel and Zobel 1997). This can be explained by the fact that semantic
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passages may be hard to reliably identify in heterogeneous corpora (Kaszkiel and

Zobel 1997).

A possible problem with dividing text into disjoint windows is that a small block

of relevant text may be split between two passages. To overcome this problem over-

lapping windows are often used (Callan 1994). Callan (1994) and Liu and Croft

(2004) propose the following approach for building overlapping windows: begin the

first passage in the beginning of the document, and create a new passage of length

n every n
2
words. This overlapping passages approach is illustrated in Figure 8.2.

Since overlapping passages were shown to be quite effective in previous work(Liu

and Croft 2002; Bendersky and Kurland 2008), we adopt it as the passage

identification method in this dissertation.

8.2.2 Passage-Based Retrieval Models

The most common way to integrate the passage-based evidence in the retrieval

model is to combine the relevance score of the entire document with that of its

passages. Since most of the current passage-based retrieval models are bag-of-words

models, they can be expressed using the following equation

sc(Q,D) = α
∑

q∈Q

f(q,D) + (1− α)Gπ∈ΠD

(

∑

q∈Q

f(q, π)
)

,

where ΠD is a set of passages derived from the document D using one of the passage

identification techniques described in Section 8.2.1, G is an arbitrary aggregation

function, and 0 ≤ α ≤ 1 is a free parameter.

While, in theory, it is possible to use any arbitrary function G to aggregate passage

evidence, the most commonly used aggregation function is max. This aggregation

approach, denoted Max-Psg, has been consistently shown to be successful in previous
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work (Callan 1994; Bendersky and Kurland 2008; Wilkinson 1994). Using

the max aggregation function, we can rewrite the equation above as

scMax-Psg(Q,D) = α
∑

q∈Q

f(q,D) + (1− α) max
π∈ΠD

(

∑

q∈Q

f(q, π)
)

. (8.1)

The success of the Max-Psg approach can be explained by the fact that it is

designed to increase the score of documents that contain at least one very relevant

passage to the query. In the context of information retrieval with verbose queries,

the Max-Psg method can help to distinguish between relevant documents that contain

several important concept dependencies within the confines of a single passage and the

non-relevant documents that match many of the query terms scattered throughout

the entire document (as in the case of the query in Figure 3.2).

In the next section, we demonstrate that the Max-Psg approach can be adopted

to model concept dependencies in a query hypergraph. This gives rise to a re-

trieval model that – unlike the standard bag-of-words passage-based retrieval models

(Callan 1994; Bendersky andKurland 2008; Wilkinson 1994; Liu and Croft

2002) – can express arbitrary weighted concept dependencies.

8.3 Modeling Concept Dependencies with Query Hypergaphs

The Max-Psg retrieval method described in the previous section, can be viewed as

a special case of the general query representation using query hypergraphs described

in Chapter 3. Recall that the query hypergraph can model both concepts (i.e., term

dependencies) as well as concept dependencies (i.e., higher-order term dependencies).

The concepts are the vertices in the query hypergraph and the concept dependencies

are the hyperedges (refer to Chapter 3 for more details on the query hypergraph

induction process).

A convenient way to visually illustrate the concept dependencies in the query

hypergraph is via a bipartite graph such as the one depicted in Figure 8.3. On the
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a

b

ab

(a,D)

(b,D)

(ab,D)

(a,b,ab,D)

Figure 8.3. Bipartite graph representation of concept dependencies in a query hy-
pergraph H. Local edges are represented by the solid edges in the bipartite graph.
The global hyperedge is represented by the dashed edges in the bipartite graph.

left side of the graph, are the query concepts and the document (i.e., the hypergraph

vertices). On the right side of the graph are the concept dependencies (i.e., the hy-

peredges). For instance, in the case of the query depicted in Figure 8.3, the following

concept dependencies (or hyperedges) are modeled:

(a,D), (b,D), (ab,D), (a, b, ab,D).

Note that the document vertex is always included in a hyperedge, since we are inter-

ested in using the concept dependencies within the retrieval model, which assigns a

relevance score to a document in response to the user query.

Recall from Section 3.2 that every hyperedge e in the query hypergraph H is

associated with a factor φe(k, D), which assigns a score to a dependency between

a subset of concepts ke in the context of document D. Therefore, according to

Equation 3.2, a relevance score of document D in response to query Q is given by the

factorization of the query hypergraph H:
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sc(Q,D) ,
∑

e∈E

log(φe(ke, D)).

Also, recall from the Section 3.3 that we consider two types of hyperedges (and the

associated factors) in the query hypergraph: the local edges and the global hyperedge.

• The local edges are defined over the (concept,document) pairs. Examples of

local edges are the concept dependencies (a,D), (b,D), (ab,D) in Figure 8.3. A

local factor associated with a local edge is defined as

φ({κ}, D) , exp
(

λ(κ)f(κ,D)
)

,

where λ(κ) is an importance weight assigned to the concept κ, and f(κ,D)

is a matching function between the concept κ and the document D. Refer to

Section 3.3.3.1 for more details about the local factors.

• The global hyperedge (κQ, D) represents a dependency between the entire set

of query concepts. Similarly to the Max-Psg retrieval model, the global factor

uses a passage π, which receives the highest score among the set ΠD of passages

extracted from the document D. Formally,

φ(κQ, D) , exp
(

max
π∈ΠD

∑

κ∈κQ

λ(κ,κQ)f(κ, π)
)

,

where λ(κ,κQ) is the importance weight of the concept κ in the context of the

entire set of query concepts κ
Q, and f (κ,π) is a matching function between

the concept κ and a passage π ∈ ΠD. Refer to Section 3.3.3.2 for more details

about the global factor derivation.

Similarly to the Max-Psg method, the global factor assigns a higher relevance

score to documents that contain a single highly-relevant passage. However, it is im-

portant to note that the query hypergraph representation with the global hyperedges
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GlobalEdgeOptimization(Λ0

L
)

1: Λ0
G ← {0}

2: ⟨M,ΛL⟩ ← CoordinateAscent(∅,Λ0
L)

3: ⟨M,ΛG⟩ ← CoordinateAscent(ΛL,Λ
0
G)

4: return ⟨M,ΛL ∪ ΛG⟩

Figure 8.4. Pipeline optimization of the parameterized query hypergraph with a
global hyperedge.

has several important advantages compared to the standard bag-of-words Max-Psg

formulations (Callan 1994; Bendersky and Kurland 2008; Wilkinson 1994;

Liu and Croft 2002).

First, query hypergraphs can model passage-level dependencies between arbitrary

concepts rather than single terms. This includes modeling a dependency between a

phrase-term pair such as (law enforcement, dogs), which is impossible to model in the

current bag-of-words Max-Psg formulations.

Second, query hypergraphs incorporate parameterized concept weighting based on

a set of importance features. These parameterized weights can be assigned both to

single concepts independently (as is done in the case of the local edges), and in the

context of their co-occurrence with the other query concepts (as in the case of the

global hyperedge).

Finally, the query hypergraph representation provides a principled method for op-

timizing the parameters of the concept weights in the local and the global hyperedges

based on some specified retrieval metric M. The specifics of this optimization are

described in the next section.

8.4 Parameter Optimization

The parameterized concept weighting and expansion models using query hyper-

graphs that we considered thus far did not incorporate the global hyperedge. For

instance, in the setting of the weighted sequential dependence model in Chapter 5,
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we considered only the local edges connecting the concepts in the set of structures

{QT,PH,PR} with the document D. In the setting of the query expansion models in

Chapter 6 and Chapter 7 we also considered the local edges connecting the expansion

terms structure to the document D.

Adding the global hyperedge (and the associated factor φe(κ
Q, D)) requires an

additional optimization stage, as described in the pipeline optimization algorithm in

Figure 8.4. First, the parameters associated with the local edges are optimized using

the coordinate ascent method (line 2 of the algorithm).

Note that in the case of the query expansion methods, described in Section 6

and Section 7, the line 2 of the algorithm becomes a pipeline optimization instead

(since both the explicit concept weights and the expansion term weights have to be

optimized). However, in this dissertation, we only consider the application of query

hypergraphs containing a global hyperedge to non-expanded queries. We leave the

exploration of the application of query hypergraphs containing a global hyperedge in

the query expansion methods to future work.

After the weights of the local factors are optimized, a second round of coordinate

ascent optimization is performed. This time the parameters associated with the global

factor are optimized.

Note that all the initial parameters associated with the global factor are set to

zero. In such a way, we ensure that if the concept dependencies captured by the

global hyperedge are not helpful in improving the retrieval performance (as measured

by some retrieval metric metric M), the global hyperedge will not be considered

in the query hypergraph construction. Conversely, non-zero weights assigned to the

global factor indicate that modeling concept dependencies via passage co-occurrence

is beneficial for retrieval effectiveness.
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Retrieval Method QT PH PR Global Hyperedge
QL S − − −
H-QL S − − S
SD S S S −
H-SD S S S S
FD S S S −

(+term subsets)

H-FD S S S S
(+term subsets)

WSD C C C −
H-WSD C C C C

Table 8.1. Retrieval baselines and their respective query hypergraph representation
including the global hyperedge. S indicates parameterization by structure, C indicates
parameterization by concept.

8.5 Evaluation

In this section, we compare the performance of the retrieval with query hyper-

graphs containing the global hyperedge to a number of state-of-the-art baselines that

incorporate exact phrase matches, proximities, and concept weight parameterization.

These baselines do not, however, incorporate concept dependencies.

The query hypergraph representation, proposed in this chapter, further extends

each of these baselines with higher-order term dependencies via the inclusion of the

global hyperedge and the corresponding global factor φ(κQ, D) (see Section 8.3). In

the remainder of this section, we examine the improvements in the retrieval perfor-

mance (or lack thereof) of these baselines when they are extended with the query

hypergraph representation including the global hyperedge.

All the initial retrieval parameters in the experiments reported in this section

are set to the default Indri values, which reflect the best-practice settings. The

parameter optimization and the evaluation are done using 3-fold cross-validation. The

statistical significance of the differences in the performance of the retrieval methods

is determined using a Fisher’s randomized test with 10,000 iterations and α < 0.05.
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Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

QL 33.09 24.24 47.62 25.66 23.85 12.75
H-QL 34.12q 25.49q 49.13q 27.24q 24.1 13.07q

(a) Query likelihood (QL) and its hypergraph representation (H-QL).

Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

SD 35.04 25.62 51.11 27.97 22.97 12.99
H-SD 35.86s 26.65s 50.57 28.63s 22.81 13.08
(b) Sequential dependence model (SD) and its hypergraph
representation (H-SD) parameterized by structure.

Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

FD 34.94 25.69 50.97 28.25 23.49 13.28
H-FD 35.64f 26.50f 50.94 28.70f 23.33 13.35
(c) Full dependence model (FD) and its hypergraph representation
(H-FD) parameterized by structure.

Robust04 Gov2 ClueWeb-B
P@20 MAP P@20 MAP P@20 MAP

WSD 37.05 27.41 52.25 29.36 25.31 14.56
H-WSD 37.07 27.79w 51.68 29.82w 25.57 14.68
(d) Weighted sequential dependence model (WSD) and its hypergraph
representation (H-WSD) parameterized by concept.

Table 8.2. Evaluation of the performance of the retrieval with query hypergraphs
using binary metrics. Best result per column is marked in boldface. Statistically
significant differences with a non-hypergraph baseline are marked by the first letter
in its title.
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Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

QL 11.44 38.75 15.06 37.89 7.32 17.74
H-QL 11.66 40.01q 15.33 39.08q 7.63 18.04
(a) Query likelihood (QL) and its hypergraph representation (H-QL).

Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

SD 11.76 40.91 15.73 40.97 7.58 17.11
H-SD 11.93 41.95s 15.93 40.7 7.78 17.44
(b) Sequential dependence model (SD) and its hypergraph
representation (H-SD) parameterized by structure.

Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

FD 11.87 40.82 16.10 40.94 8.21 18.02
H-FD 11.94 41.65f 16.02 41.01 8.15 17.92
(c) Full dependence model (FD) and its hypergraph representation
(H-FD) parameterized by structure.

Robust04 Gov2 ClueWeb-B
ERR@20 NDCG@20 ERR@20 NDCG@20 ERR@20 NDCG@20

WSD 12.04 42.86 16.52 42.47 8.58 19.58
H-WSD 12.34w 43.31 16.56 42.05 8.31 19.26
(d) Weighted sequential dependence model (WSD) and its hypergraph
representation (H-WSD) parameterized by concept.

Table 8.3. Evaluation of the performance of the retrieval with query hypergraphs
using graded metrics. Best result per column is marked in boldface. Statistically
significant differences with a non-hypergraph baseline are marked by the first letter
in its title.
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We measure the performance using standard retrieval metrics for TREC corpora,

as described in Section 4.2. For metrics that use binary relevance judgments, we

use precision at the top 20 retrieved documents (P@20) and mean average precision

across all the queries (MAP ). For metrics that use graded relevance judgments, we

use normalized discounted cumulative gain and expected reciprocal rank at rank 20

(NDCG@20 and ERR@20, respectively). We evaluate the retrieval methods under

comparison using the three TREC corpora shown in Table 4.1.

Since the complex concept dependencies are most likely to benefit verbose queries,

in this section we only report the retrieval effectiveness for the ⟨desc⟩ queries. Our

preliminary experiments indicate that incorporating the global hyperedge does not

result in significant effects on retrieval performance for the short ⟨title⟩ queries.

The main purpose of the empirical evaluation in this section is to examine the

benefits that stem from adding a global hyperedge to a query hypergraph. To this

end, we start with several baseline query hypergraph representations that incorporate a

range of structures and have varying parameterizations, but do not include the global

hyperedge. To each of these baselines representations, we add a global hyperedge.

Thus for each baseline representation B, we create a hypergraph representation H-B,

which includes the global hyperedge.

Table 8.1 demonstrates these baselines and their respective representations includ-

ing the global hyperedge. As we can see, Table 8.1 contains several hypergraphs that

differ by the structures they contain and their parameterization. In the next sections,

we examine the benefits that can be obtained by adding a global hyperedge to these

baselines.

8.5.1 Comparison to the Query Likelihood Model

Query likelihood (Ponte and Croft 1998) is a popular retrieval method that

employs a bag-of-words query representation. In this section, we juxtapose the re-
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trieval performance of the query likelihood baseline (denoted QL) to the performance

of a query hypergraph that includes a single QT-structure (structure that contains

the individual query terms as concepts) and the global hyperedge. We denote this

hypergraph representation H-QL. This juxtaposition demonstrates the contribution

of the global factor φ(κQ, D) to the retrieval performance.

Table 8.2(a) and Table 8.3(a) demonstrate the comparison between the QL and

the H-QL methods. The results in these tables show that the addition of the global

factor φ(κQ, D) into a bag-of-words representation significantly improves its retrieval

effectiveness in all the cases, for both binary and graded retrieval metrics.

Note that the H-QL method is equivalent to the bag-of-words Max-Psg method

that was shown to be effective in the previous work (Bendersky and Kurland

2008; Cai et al. 2004; Callan 1994; Kaszkiel and Zobel 1997; Wilkinson 1994)

and discussed in Section 8.2.2. Max-Psg ranks the documents in the collection by a

combination of the document score and the score of its highest-scoring passage. Thus,

the improvements in retrieval performance shown in Table 8.2(a) and Table 8.3(a)

are in line with the improvements attained by the Max-Psg method reported in the

previous work.

8.5.2 Comparison to the MRF-IR models

Markov random fields for information retrieval (MRF-IR) is a state-of-the-art

retrieval framework that incorporates term dependencies. It was first proposed by

Metzler and Croft (2005), and was shown to be highly effective, especially for

large-scale web collections.

Metzler and Croft (2005) propose two instantiations of the general MRF-IR

framework. The first instantiation is the sequential dependence model (denoted SD),

which incorporates only dependencies between adjacent query terms. The second

instantiation is the full dependence model (FD), which incorporates dependencies be-
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tween all query term subsets. However, due to the verbosity of the description queries,

in this paper, we limit our evaluation to query term subsets with at most three terms.

The SD and FD baselines can be represented with respective hypergraphs that

include the structures QT, PR and PH, and only local edges. Both of these hypergraphs

can be extended with a global hyperedge. We denote these extended hypergraph

representations H-SD and H-FD, respectively. These hypergraphs are parameterized

by structure, and their ranking functions are derived according to Equation 3.6.

Table 8.2(b) and Table 8.3(b) compare the performance of the sequential depen-

dence baseline (SD) and its corresponding hypergraph H-SD. As evident from these

tables, in the majority of the cases the retrieval effectiveness (especially in terms of

MAP ) is significantly improved by the inclusion of the global hyperedge. However,

these improvements are smaller than in the case of the QL baseline.

Similarly, Table 8.2(c) and Table 8.3(c) compare the performance of the full de-

pendence baseline (FD) and its corresponding hypergraph H-FD. Comparing the SD

and the FD baselines, we can see that in most cases the FD baseline slightly outper-

forms the SD baseline. However, these differences were not found to be statistically

significant.

When comparing the performance of the FD baseline and its corresponding hy-

pergraph H-FD, Table 8.2(c) and Table 8.3(c) demonstrate that the inclusion of the

global factor results in an improved retrieval effectiveness (in terms of MAP ) for all

collections, and in statistically significant improvements for the Robust04 and Gov2

collections.

In addition, we can compare between the retrieval performance of the hypergraphs

H-SD and H-FD. Similarly to the case of the baselines SD and FD, no statistically

significant differences were found in the performance of these hypergraphs that include

a global hyperedge. H-FD is slightly more effective for the ClueWeb-B and the Gov2

collections, while being slightly less effective for the Robust04 collection.
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8.5.3 Comparison to the Weighted Sequential Dependence Model

A major drawback of the SD and the FD baselines is that they are parameterized

by structure, which ties the importance weights λ(·) of all the concepts that belong to

the same structure (i.e., all the terms, phrases and proximities get the same respective

weights). As shown in the experiments in Chapter 5, this parameterization can be

detrimental, especially for longer, more verbose queries that may mix concepts of

differing importance.

Recall that in Chapter 5 we proposed a weighted variant of the sequential depen-

dence model (denoted WSD) that overcomes this drawback. The concept weights in

the WSD method are parameterized using a set of importance features, associated with

each concept based on its respective structure, as described in Chapter 5.

We extend the WSD baseline with a query hypergraph H-WSD. The H-WSD includes

the global factor φ(κQ, D), which is also parameterized by concept. The ranking

function for the H-WSD hypergraph is presented in Equation 3.7.

Table 8.2(d) and Table 8.3(d) compare the retrieval performance of the WSD base-

line and its corresponding hypergraph H-WSD. While the retrieval improvements that

stem from this hypergraph extensions are not as pronounced as in the cases of the QL,

SD and FD baselines, the addition of the global factor to the WSD baseline still results

in effectiveness gains for all the collections and most of the metrics.

For instance, for the Gov2 collection, theH-WSDmethod improves the performance

(in terms ofMAP ) for 60% of the queries compared to the WSD baseline, while hurting

only 30% of the queries. For 7% of the queries MAP is improved by more than 25%,

while there is a 25% drop in performance for only 2% of the queries.

8.5.4 Further Retrieval Performance Analysis

In addition to comparing each individual query hypergraph model to its respective

baseline in Table 8.1, some general trends can be observed in Table 8.2 and Table 8.3.
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First, it is interesting to compare the relative differences in gains across the baselines,

when the global hyperedge is added. The gains are the largest for the QL baseline,

which does not include any term dependencies, and decrease as more term dependen-

cies are added by the SD and the FD baselines. As an example, for the Gov2 collection,

the effectiveness gain as a result of the global factor inclusion decreases from 6.2%

for the QL baseline to 1.6% for the FD baseline.

These diminishing returns demonstrate that there is some degree of overlap be-

tween the effect of term dependencies and higher-order term dependencies on the

retrieval effectiveness. The overlap is not complete, however, since the addition of

the global factor still has a statistically significant impact on the retrieval performance

in most cases. This is true even for the FD baseline, which includes term dependencies

between all query term pairs and triples.

Finally, we note that the parameterization of the ranking function by concept

(as in the WSD baseline) (a) significantly improves the retrieval performance of the

ranking function parameterized by structure (as in the SD baseline), and (b) further

diminishes the gains obtained through the inclusion of the global factor. While H-WSD

is the best-performing retrieval method (in terms of MAP ) in Table 8.2, its average

effectiveness gain over the WSD baseline is only 1.3%. For comparison, the average

effectiveness gain of the H-QL method over the QL baseline is 4.7%.

8.5.5 Parameterization Analysis

In this section we analyze the parameterization of query hypergraphs. We examine

both parameterization-by-structure and parameterization-by-concept regimes, which

are described in detail in Section 3.4.1 and Section 3.4.2, respectively.

Recall that the parameters of the query hypergraph are optimized using the co-

ordinate ascent algorithm such that the ranking function is decomposed into local

and global factors (see Section 8.4). In this section, we display the resulting param-
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eterization for the Robust04 collection. We choose this collection, since it has the

largest number of queries, and the learned parameterization is stable across all folds.

However, it is important to note that the findings in this section hold for the other

two collections as well.

8.5.5.1 Parameterization by Structure

Table 8.4 shows the hypergraph parameters for the local factors (λ(σ)) and

the global factor (λ(σ,ΣQ)), averaged across folds, when the parameterization-by-

structure approach is used (see Equation 3.6). These parameters correspond to the

H-SD model, the results for which are shown in Table 8.2(b) and Table 8.3(b).

Note that both for the local and the global factors the weights assigned to the term

structure (QT) are the highest, which is in line with other models that incorporate

term dependencies (Metzler and Croft 2005). This demonstrates that despite

the importance of term dependencies, individual term occurrences are still the most

important indicators of relevance.

In addition, in Table 8.4, the parameters of the local factors are weighted higher

than the parameters of the global factor. Recall that the global factor is defined

over the highest-scoring passage in the document. Thus, the lower weight of the

global factor parameters is in line with previous work, where passage evidence is

typically weighted lower than the document evidence (Bendersky and Kurland

2008; Wilkinson 1994; Kaszkiel and Zobel 1997).

Finally, note the negative weight assigned to the proximity (PR) structure in the

global factor. While small, this negative weight is consistent across folds, as well

as in the other collections. Intuitively, this negative weight indicates that in the

highest-scoring passage of the relevant document we expect to encounter exact phrase

concepts, rather than unordered proximity concepts.
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λ(σ) λ(σ,ΣQ)
QT +0.520 +0.322
PH +0.065 +0.017
PR +0.065 −0.011

Table 8.4. Query hypergraph parameterization by structure (Robust04 collection).

λ(ϕ,σ) λ(ϕ,σ,ΣQ)
ϕ QT PR+PH QT PR+PH
GF −0.007 0 −0.005 −0.001
WF +0.017 +0.007 +0.002 +0.002
QF +0.012 0 +0.007 +0.008
CF −0.021 0 −0.008 0
DF −0.018 0 −0.001 0
AP +0.540 +0.029 +0.298 +0.003

Table 8.5. Query hypergraph parameterization by concept (Robust04 collection).

8.5.5.2 Parameterization by Concept

Table 8.5 shows the hypergraph parameters for the local factors (λ(ϕ,σ)) and

the global factor (λ(ϕ,σ,ΣQ)), averaged across folds, when the parameterization-by-

concept approach is used (see Equation 3.7). These parameters correspond to the

H-WSD model, the results for which are shown in Table 8.2(d) and Table 8.3(d). For

the convenience of presentation and to reduce weight sparsity, we combine the weights

of the PH and PR structures in the PR+PH column.

Note that the a priory constant importance feature AP generally receives the high-

est weight. This is due to the fact that setting all the other feature weights to zero

yields exactly the parameterization-by-structure approach.

Features such as document frequency (DF), collection frequency (CF) and Google

frequency (GF) receive, as expected, negative weights in most cases. In contrast, the

query frequency (QF) and the Wikipedia title frequency (WF) features get positive

weights, which indicates that the appearance of the concept in page title or in a

search query is positively correlated to the concept importance.
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(a) What is the effect of Turkish river control projects on Iraqi water resources?

Local Factor Weights
(0.0315 effect) (0.0451 turkish) (0.0508 river) (0.0313 control)
(0.0263 projects) (0.0413 iraqi) (0.0387 water) (0.0344 resources)
(0.0079 “effect turkish”) (0.0079 “turkish river”) (0.0096 “river control”)
(0.0079 “control projects”) (0.0079 “projects iraqi”)
(0.0079 “iraqi water”) (0.0194 “water resources”)

Global Factor Weights
(0.0203 effect 0.0262 turkish 0.0284 river 0.0164 control
0.0248 projects 0.0255 iraqi 0.0266 water 0.0252 resources
0.0014 “effect turkish” 0.0014 “turkish river” 0.0011 “river control”
0.0014 “control projects” 0.0014 “projects iraqi”
0.0014 “iraqi water” −0.0007 “water resources” )

(b) What counterfeiting of money is being done in modern times?

Local Factor Weights
(0.0610 counterfeiting) (0.0499 money)
(0.0408 done) (0.0614 modern) (0.0422 times)
(0.0178 “counterfeiting money”) (0.0178 “money done”)
(0.0178 “done modern”) (0.0468 “modern times”)

Global Factor Weights
(0.0198 counterfeiting 0.0067 money
0.0101 done 0.0105 modern 0.0039 times
0.0012 “counterfeiting money” 0 “money done”
0 “done modern” 0.0048 “modern times”)

Table 8.6. Examples of weights assigned to the concepts in the local and global
factors.
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8.5.5.3 Parameterization Examples

Table 8.6 demonstrates a full parameterization for two ⟨desc⟩ queries. This pa-

rameterization includes both the local factor weights and the global factor weights.

In both cases, the parameterization by concept approach is used.

Table 8.6 illustrates some of the similarities and the differences between the in-

dependent concept weights (local factor weights) and their weights dependent on the

other concepts (global factor weights). For instance, the weights of the single terms

in both local and global factors in Table 8.6 follow roughly the same trend, while the

phrase weights differ.

For query (a) in Table 8.6, the phrase water resources, which has the highest local

factor weight, has a negative weight in the global factor. This setting corresponds

to the intuition that a relevant document should contain the phrase water resources,

however the most relevant passage in that document should focus on phrases that

mention Turkey and Iraq.

Similar differences can be observer for query (b) in Table 8.6 as well. Note that

some phrases in query (b) have zero weights in the global factor, while being assigned

positive local factor weights.

8.6 Summary

In this chapter, we introduced query hypergraph representations that incorporate

parameterized concept dependencies. Parameterized concept dependencies can model

dependencies between arbitrary concepts in the query, rather than single query terms,

and assign weights to these dependencies based on their contribution to the overall

retrieval effectiveness of the query.

Parameterized concept dependencies are inspired by passage-based retrieval meth-

ods that are described in Section 8.2. In Section 8.3, we showed how parameterized

concept dependencies can be modeled using query hypergraphs. In Section 8.4, we
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described the optimization process of query hypergraphs with concept dependencies.

In Section 8.5, we conducted retrieval experiments to demonstrate the superiority of

the retrieval models that integrate concept dependencies to their counterparts that

treat the query concepts independently.

This chapter concludes the exploration of various instantiations of the theoretical

query hypergraph representation framework that we began in Chapter 5. We explored

parameterized concept weighting in Chapter 5, parameterized query expansion in

Chapter 6 and Chapter 7, and parameterized concept dependencies in this chapter.

In the next – and final – chapter of this dissertation, we will summarize the findings

of this dissertation and propose some potential directions for future work.
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CHAPTER 9

SUMMARY AND FUTURE WORK

In this chapter we conclude this dissertation, and provide a broad perspective on

our work. We start the chapter in Section 9.1 by highlighting the main steps in the

process of query representation and information retrieval using query hypergraphs.

Then, in Section 9.2 we summarize the key experimental results reported in this

dissertation. We conclude the chapter and the dissertation in Section 9.3, where we

discuss potential directions for future research.

9.1 Overview of the Query Hypergraphs

As described in this dissertation, query hypergraphs can model a variety of lin-

guistic phenomena including concept weighting, query expansion and concept de-

pendencies. However, it is important to note that constructing a query hypergraph

representation requires only a handful of well-defined basic steps that we highlight in

this section.

(a) Structures In order to create a hypergraph we need to decide on a set of

linguistic structures over which a hypergraph is defined. Each structure consists

of individual concepts such as terms or phrases. These concepts are modeled as

vertices in the query hypergraph.

(b) Hyperedges Once the structures are defined, we need to define dependencies

between them. These dependencies are modeled as hyperedges in the query

hypergraph.
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(c) Factors Once the hyperedges are determined, we define factors associated with

each hyperedge. These factors determine the contribution of each hyperedge to

the total relevance score of a given document.

(d) Parameterization Hypergraph parameterization may take several forms. We

may parameterize by structure – that is we can tie the weights of all the concepts

in the same structure. On the other hand, we may parameterize by concept

and assign varying concept weights, based on a set of features indicating their

importance. As we show in this dissertation, parameterization by concept leads

to improved retrieval performance, especially for verbose queries.

(e) Parameter Optimization Once the parameterization is defined we need to

select a technique for optimizing the hypergraph parameters. In this disserta-

tion, we propose a pipeline optimization method that can be used to optimize

the parameters of a query hypergraph in multiple stages. This is especially

useful for the cases when the query hypergraph representation can be affected

by previous optimization steps (e.g., in the case of query expansion).

(f) Ranking Function The ranking function finalizes the process of hypergraph

construction, and combines the parameterized factors (with the optimized pa-

rameters) into a single document relevance score.

9.2 Summary of the Experimental Results

In this section, we summarize some of the key experimental results presented in

this dissertation. We divide the examined retrieval methods into methods that use

only the original query, and methods that employ query expansion. Since the focus

of this dissertation is on verbose queries, we report the results of our experiments on

the ⟨desc⟩ queries in this section.
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⟨desc⟩ Robust04 Gov2 ClueWeb-B
QL 24.24 25.66 12.75
SD 25.62∗ (+5.7%) 27.97∗ (+9.0%) 12.99 (+1.9)
WSD 27.41∗† (+13.1%) 29.36∗† (+14.4%) 14.56∗† (+14.3%)
H-WSD 27.79∗† (+14.7%) 29.82∗† (+16.2%) 14.68∗† (+15.2%)

Table 9.1. Retrieval effectiveness gains, as measured by MAP , of query hyper-
graph based retrieval models (WSD, H-WSD) compared to the current state-of-the-art
retrieval models (QL, SD). The numbers in the parentheses indicate the percentage
of improvement in MAP over the QL baseline. Statistically significant improvements
with respect to QL and SD are marked by ∗ and †, respectively.

⟨desc⟩ Robust04 Gov2 ClueWeb-B
LCE 28.32 30.34 14.09
PQE 29.23∗ (+3.2%) 31.35∗ (+3.3%) 15.02 (+6.6%)
MSE 30.68∗ (+8.3%) 31.10 (+2.5%) 15.23∗ (+8.1%)

Table 9.2. Retrieval effectiveness gains, as measured by MAP , of query hypergraph
based retrieval models that incorporate query expansion (PQE, MSE) compared to the
latent concept expansion model (LCE). The numbers in the parentheses indicate the
percentage of improvement in MAP over the LCE baseline. Statistically significant
improvements with respect to LCE is marked by ∗.
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Table 9.1 demonstrates a summary of the retrieval methods that use only the

original query. As we see from Table 9.1, the non-parameterized retrieval methods

(QL and SD) are significantly inferior to the parameterized retrieval method based on

the query hypergraph representation (WSD and H-WSD). The best-performing method,

overall, is H-WSD, which combines both parameterized concept weighting and param-

eterized concept dependencies. H-WSD attains a consistent improvement of 15% or

more in theMAP metric, compared to the QL retrieval method across all the corpora.

Table 9.2 demonstrates a summary of retrieval methods that use both the original

query and the expansion terms. Table 9.2 shows that the latent concept expansion, a

state-of-the-art query expansion method, is always less effective than the parameter-

ized query expansion using either the retrieval corpus alone (PQE) or using multiple

information sources (MSE). These improvements are statistically significant in the ma-

jority of the cases and range between 3% and 8%.

Finally, it is important to note that while the comparison in this section is based

on the verbose ⟨desc⟩ queries, which are the main focus of this dissertation, the

query hypergraph representation is robust enough to handle retrieval with both short

keyword queries and verbose queries. In fact, as tables in Section 5.4, Section 6.5

and Section 7.5 demonstrate, query hypergraphs usually result in significant retrieval

effectiveness improvements for short ⟨title⟩ queries as well.

9.3 Future Work

In our opinion, query hypergraphs are an important advance in information re-

trieval research in general, and, in particular, in retrieval with verbose, grammatically

complex queries. However, retrieval with verbose queries presents many difficult re-

search challenges, many of which are not addressed in this dissertation. Next, we

describe some of these challenges and directions for potential future research.
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(a) Query Hypergraphs with Arbitrary Features. In this dissertation, we

focused on query hypergraphs that contain linguistic structures. Thus, a vertex

in a query hypergraph was a single textual concept that could be matched within

the retrieved document. However, many of the current retrieval systems such

as commercial web search engines use features that go beyond textual matches

for the purposes of document retrieval ranking. These features include (but are

not limited to) link-based features such as PageRank (Brin and Page 1998),

document formatting and layout (Bendersky et al. 2011), document reading

level (Collins-Thompson et al. 2011) and visitation patterns (Richardson

et al. 2006). Incorporating these features that go beyond textual matches into

the existing query hypergaph representation is a promising direction for future

work with many practical applications.

(b) Natural Language Processing and Query Hypergraphs. The linguistic

structures that are used in the query hypergraph representation described in

this dissertation are very basic and do not go beyond bigram phrases and prox-

imity matches. Despite their simplicity, these structures result in significant

retrieval performance improvements. These improvements are due to parame-

terized concept weighting and concept dependencies that are employed in the

query hypergraph representation. However, it would be interesting to examine

whether adding more complex linguistic structures that can be detected using

natural language processing to the query hypergraphs will result in further gains

in retrieval effectiveness. Examples of such structures may include noun and

verb phrases, named entities, parse trees and semantic roles.

(c) Efficient Retrieval with Query Hypergraphs. The focus of this disser-

tation is on retrieval effectiveness rather than retrieval efficiency. However, it

is important to note that query hypergraphs can be used, in addition to pro-
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viding effective query representations, to improve retrieval efficiency. A recent

example of such approach is work by Wang et al. (2010) that use parameter-

ized concept weights to reduce query runtime by dropping the lowest-weighted

concepts. Similarly to this prior work, both parameterized query expansion and

parameterized concept dependencies can serve as a basis for the development

of more efficient retrieval models.
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