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ABSTRACT

Concept taxonomies such as MeSH, the ACM Computing
Classification System, and the NY Times Subject Headings
are frequently used to help organize data. They typically
consist of a set of concept names organized in a hierarchy.
However, these names and structure are often not sufficient
to fully capture the intended meaning of a taxonomy node,
and particularly non-experts may have difficulty navigating
and placing data into the taxonomy. This paper introduces
two semi-supervised topic models that automatically aug-
ment a given taxonomy with many additional keywords by
leveraging a corpus of multi-labeled documents. Our exper-
iments show that users find the topics beneficial for taxon-
omy interpretation, substantially increasing their cataloging
accuracy. Furthermore, the models provide a better infor-
mation rate compared to Labeled LDA [7].

Categories and Subject Descriptors

I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis; H.3.7 [Information Systems]: Digital
Libraries; G.3 [Mathematics of Computing]: Probability
and Statistics—Statistical computing
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1. INTRODUCTION
Many organizations such as the Association of Computing

Machinery (ACM) use taxonomies of classes as structured
metadata to facilitate browsing of their document libraries.
Users browse and search these libraries by navigating a hi-
erarchy of named concept nodes. When new documents are
added to the library they must also be assigned one or more
concept names. This task is often performed by the docu-
ment authors themselves, not trained catalogers.

Unfortunately, the concept node names often do not de-
scribe the concept in sufficient detail for unfamiliar users
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to fully understand the topics a node is intended to cap-
ture. We present a user study (Section 4.3) confirming that
substantial inaccuracies arise when asking computer science
graduate students to assign a research paper to nodes of
the ACM taxonomy when given its node names and hier-
archical structure. Users could gain better understanding
by reading titles of papers that have previously been accu-
rately assigned, but this would be time consuming. Taxon-
omy builders could augment each concept name with a list
of keywords that delineate the concept. But this task would
be burdensome to perform manually for large taxonomies,
and furthermore would need to be redone frequently since
new ideas and topics within a concept arise over time.

This paper presents two semi-supervised topic models that
automatically discover lists of relevant keywords for tax-
onomic concepts. The models, termed Labeled Pachinko
Allocation (LPAM) and LPAM-List, take as input an ex-
isting taxonomy as well as documents with their concept
assignments. Then they run inference in a latent-Dirichlet-
allocation-like manner in which there is one topic per con-
cept node, and the set of topics allowable in the document is
restricted by its taxonomic concept labels, augmented with
their ancestors in the hierarchy. Document terms are as-
signed to the topics, and the highest weighted words in each
topic become the concept keywords. Notably, even though
most documents are labeled with multiple concepts and all
concepts pull in their ancestors, the model is able to par-
tition the keywords into their appropriate concepts. Fur-
thermore, incorporating ancestor nodes enables our models
(a) to discover keywords for more abstract concepts located
close to the root of the taxonomy, and (b) to separate more
generic words out of the taxonomy leaves.

Multiple previous papers have focused on learning topic
hierarchies (e.g., [2, 4]). We are addressing the complemen-
tary problem—leveraging a given human-defined hierarchy
such as ACM’s Computing Classification System. Like our
work, some other methods sample paths to nodes in a given
taxonomy (e.g., Hierarchical Concept Topic Model (HCTM)
[9], Hierarchical Pachinko Allocation (HPAM) [5], Multilin-
gual Supervised LDA (ML-SLDA) [3]). However, LPAM
leverages available labels to select a subtree of the taxonomy
to generate a given document. Furthermore, LPAM differs
from HCTM in that each node has a distribution over the
whole vocabulary, not over a pre-specified subset.

The second model we propose, LPAM-List, represents a
document as a mixture of the same topic nodes as LPAM’s,
but does not use the tree structure in its generative process.
This makes it more similar to Labeled LDA [7] which also
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Figure 1: The first two sentences from the abstract of a pa-
per about information retrieval [11]. The publication is la-
beled with the shaded node from the ACM taxonomy. Some
of the neighboring nodes are also displayed.

constrains the choice of topics to those associated with the
document’s assigned concepts. However, LPAM-List addi-
tionally incorporates the taxonomic ancestors of the assigned
nodes. This simple change enables it to learn about both
leaves and interior nodes of the taxonomy. Similarly to La-
beled LDA, Newman et. al. [6] also uses a non-hierarchical
set of concept labels, but rather than discovering a distribu-
tion of words for each concept, they instead estimate a dis-
tribution of topics for each concept; this is accomplished by
using document labels as authors in the author-topic model
[8].

Our experiments show that leveraging the internal struc-
ture of taxonomies imparts our methods with two advan-
tages. First, we obtain a better information rate compared
to Labeled LDA (Section 4.2), indicating that our models
more precisely capture characteristics of the data. Second,
we obtain a list of keywords for each concept in the taxon-
omy, including the high-level interior concepts that do not
usually appear as labels. Our user study shows that our con-
cept description keywords help people interpret a taxonomy
as measured by the accuracy of concept label assignments
(Section 4.3).

2. MODELS

2.1 Labeled Pachinko Allocation
LPAM is a semi-supervised topic model for documents

labeled with nodes from a taxonomy. It builds on latent
Dirichlet allocation (LDA) [1] and hierarchical pachinko al-
location [5] by leveraging additional structure, as described
in this section. For each document d, it considers a restricted
set of taxonomy nodes Cd consisting of the document labels,
augmented with their ancestors in the hierarchy. For exam-
ple, the document in Figure 1 is a mixture of the nodes Info.
Search and Retrieval, Info. Storage and Retrieval, Info. Sys-
tems, and Root. Each node c ∈ Cd defines a multinomial
distribution θ(d,c) over child nodes in Cd plus an additional
one termed the exit. Also, each node r in the taxonomy
is associated with a multinomial distribution φ(r) over the
vocabulary. Like some other models such as HPAM, LPAM
represents a distribution over paths using multinomials over

child nodes; however, LPAM additionally enforces path con-
straints based on labels.

LPAM’s generative process operates as follows:
1. For each node r draw φ(r) ∼ Dir(β)
2. For each document d:
(a) For each node c ∈ Cd, draw θ

(d,c) ∼ Dir(α(d,c)).
(b) For each word w:

- Draw r ∼ Mult(θ(d,root))

- While r is not an exit, draw r ∼ Mult(θ(d,r))

- Draw w ∼ Mult(φ(a)) where a is r’s parent

We train the models by Gibbs sampling. The probability
of choosing node c as the topic of the i’th token (wi) given
the remaining topic assignments (z\i) and all words (w) is:
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(

k
∏

j=2

n
(d)
cj−1,cj + α

(d,cj−1)
cj

∑

r
(n

(d)
cj−1,r + α

(d,cj−1)
r )

)

n
(w)
c + βw

∑

m
(n

(m)
c + βm)

where U is the set of hyperparameters; n
(d)
cj−1,cj is the num-

ber of times node cj is visited from its parent cj−1 for doc-

ument d; n
(w)
c is the number of times word w is assigned to

node c; k is the level at which the exit is located, i.e., ck−1

is the node generating the word. The contribution of the
token being sampled is removed from these counts.

The first term of the right-hand side expression above is
the probability of traversing the path to node c and choosing
to emit from it. The second term is the probability of gen-
erating word w from the word distribution associated with
concept c.

2.2 Labeled Pachinko Allocation - List
LPAM-List considers the same restricted set of topics Cd

as LPAM’s but sampling a path is not part of the generative
process. If ψ(d) is a multinomial distribution over the nodes
in Cd, then the generative storyline is:
1. For each node r draw φ(r) ∼ Dir(β)
2. For each document d:
(a) Draw ψ(d) ∼ Dir(α(d))

(b) For each word w draw c ∼Mult(ψ(d)) and w ∼Mult(φ(c))

In contrast, Labeled LDA [7] constrains the topics only
to those associated with the document labels. LPAM-List’s
sampling equation is:

P (zi = c|z\i,w,α
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where zi is the topic of the i’th token wi; z\i are the topic

assignments of the remaining tokens; c ∈ Cd; n
(d)
c is the

number of times node c is sampled in document d; n
(w)
c is the

number of times word w was assigned to node c. Similarly
to LPAM’s sampling equation, the contribution of the token
being sampled is removed from these counts.

3. DATASETS AND PREPROCESSING
We perform experiments on two datasets: (1) abstracts

of scientific publications from the ACM digital library, and
(2) the first 300 tokens of articles from the New York Times
(NYT) dataset. We remove stopwords and tokens that ap-
pear fewer than five times in the corresponding corpus.



Statistics ACM NYT

Taxonomy size 268 580
Taxonomy depth 4 6
Labels/doc 3.13 5.98
Nodes/doc 8.2 8.94
Branching nodes/doc 1.65 2.11
Number of docs 20,527 15,493
Vocabulary size 13,906 27,544
Num tokens 1,499,878 3,323,851
Tokens/doc 73.07 214.54

Table 1: Dataset statistics. Taxonomy size is the number of
nodes in the taxonomy. (We exclude nodes that are not used
to label any document in our dataset and are not ancestors
of label nodes. These concepts do not affect sampling and
it is impossible to discover keywords for them.) Labels/doc
is the average number of document tags. Nodes/doc is the
average number of restricted nodes, i.e., label nodes and
their ancestors. Branching nodes/doc - a branching node is
a restricted node that has at least 2 child nodes. Tokens/doc
- number of tokens per document after removing stopwords.

Documents from each dataset are labeled with node(s)
from a dataset-specific taxonomy. These taxonomies have
tree structures. However, our models can be trivially ex-
tended to handle directed acyclic graphs as well. ACM doc-
uments are tagged with at least one leaf node. We ignore the
additional descriptors beyond the leaf-node labels. If a doc-
ument is tagged with a node called “General”, that implies
the paper is relevant to most of the nodes in that subtree.
The models we propose and Labeled LDA require a specific
set of document labels. For this reason we discard papers
tagged with“General.” These documents constitute only 4%
of the dataset and our goal of attaining concept keywords
can be achieved without them.

NYT articles can be tagged with multiple leaf or internal
nodes. For 98% of the documents, an ancestor of a document
label is also used to tag the article. However, in merely
0.6% of the documents all the ancestors are labels. Table 1
contains more statistics.

4. EXPERIMENTAL RESULTS
Let 1(N) be a vector of size N containing 1’s. The param-

eters β, α(d), and α(d,c) are set, respectively, to 0.01×1(V ),
1(|Cd|), and 1(K), where V is the vocabulary size, Cd is the
set of restricted nodes for document d, and K is the number
of c’s child nodes that are in Cd plus 1 (because of the exit).

4.1 Topic examples
Figure 2 shows the topics that LPAM and LPAM-List

learn for a few ACM nodes—Database Applications and its
ancestors. Labeled LDA considers only labels, so it produces
topics only for leaf nodes such as Database Applications. We
can see that the higher in the taxonomy the concepts are
located, the more general the corresponding keywords are.
The reason is that those concepts take part in the generation
of many documents, so domain-specific stopwords (e.g., “pa-
per”and“based”highlighted in bold in Figure 2) common to
all these documents are driven higher up the tree. Labeled
LDA does not use internal nodes. As a result, general words

Root

Info
Systems

Database
Management

Database
Applications

(LPAM) paper based system systems approach data time 
             results analysis present  
(LPAM-List) paper based approach time systems data 
             system work results analysis

(LPAM) data information system paper based web user 
             users management systems
(LPAM-List) information system paper data based model 
             systems user management users

(LPAM) data query queries database databases problem
             view tree processing xml
(LPAM-List) data query queries database databases 
             problem view efficient algorithm algorithms

(LPAM) mining data spatial patterns gis algorithms temporal 
             analysis discovery time
(LPAM-List) data mining spatial knowledge patterns temporal 
            gis complex time analysis
(LLDA) data mining information paper spatial knowledge 
             system based analysis time

Figure 2: Four taxonomy nodes along with the correspond-
ing top 10 words learned by LPAM, LPAM-List and La-
beled LDA (LLDA). Note that LLDA provides no keywords
for the internal nodes and that the new models successfully
pull domain-specific words to the top of the hierarchy (see
the examples shown in bold).
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Figure 3: Information rate calculated on the ACM dataset.
Note that lower is better. The difference between the models
is statistically significant (p < 0.001).

are prominent in the distributions corresponding to the leaf
nodes.

4.2 Information rate
We set aside 10% of the data for testing (wtest) and 90%

of the data for training (wtrain). We use the “left-to-right”
algorithm [10] to compute P (wd

test|wtrain, ztrain,U) where
U is the set of hyperparameters and wtest

d denotes the words
in the d’th test document. This probability is averaged
across 5 runs to calculate the estimate P̃d and the infor-

mation rate − ln P̃d

Nd
, where Nd is the number of tokens in the

test document.
Because of limited space, we present in Figure 3 the aver-

age information rate obtained using one of the datasets, the
ACM corpus. We compare the models using a two-tailed
paired t-test. LPAM consistently outperforms LPAM-List,
which in turn is better than Labeled LDA. The differences
between the models is statistically highly significant (p <

0.001) for varying amounts of training data. In the NYT



Action

Addition

Deletion

Correct Approx. Incorrect

10

21 -

5

5

2

Figure 4: User study results - actions taken after viewing
discovered keywords

dataset LPAM achieves a slightly worse information rate
compared to LPAM-List. However, both of these models
outperform LLDA. As we point out in Section 3, if a NYT
document is labeled with a given concept, then in many
cases some of the ancestor nodes are also among the docu-
ment tags. As a result, the margin between Labeled LDA
and the other two models is smaller compared to the results
we obtain with the ACM dataset. In future work, we plan
to examine the differences between LPAM and LPAM-List.

4.3 Dataset navigation
We would like to know whether the concept keywords help

taxonomy interpretation. We focus on the ACM dataset and
use the keywords discovered by LPAM-List.

To address this question we designed and issued a survey
to 15 graduate student volunteers at the Computer Science
Department at University of Massachusetts Amherst. In our
survey each participant is presented with a randomized list
of abstracts and has to complete the following four tasks:
Step 1 : Select four ACM abstracts that are about topics
with which they are not significantly familiar. Since we have
15 participants, the total number of labeled abstracts is 60.
Step 2 : For a given abstract, we present the user the sub-
trees rooted at the second level (the level under the top node)
that contain the document’s labels. In this way, we save the
survey participants from needing to browse subtrees that
are obviously irrelevant. The users are asked to label each
abstract with at least one relevant tag among the leaves of
the presented subtrees. The keywords that our models dis-
covered are not presented.
Step 3 : The users are shown the top 20 keywords associ-
ated with each concept and are asked to classify the same
four abstracts they select in Step 1. If the users change any
of the tags, they have to explain what prompted the change.
Step 4 : The users comment whether they find it useful to
have the LPAM-List’s topic keywords at their disposal.

Note that although all participants are experts in com-
puter science, they are not experts in the particular research
sub-areas of the test documents. We analyze the node ad-
ditions and deletions the participants made in Step 3. An
addition can be correct (the added label is in the set of true
labels), approximate (the added label shares a parent with a
true label), or incorrect (none of the previous two cases). A
deletion can be correct (the removed label is not in the set
of true labels) or incorrect (the removed label is correct).

The results are summarized in Figure 4. The majority
of the actions (36 out of 43) are beneficial. More specifi-
cally, the fraction of correctly removed labels is significantly
greater than the fraction of incorrectly removed ones. This
result indicates that keywords are helpful for identifying er-
rors. Similarly, the fraction of correct and approximate ad-
ditions is greater than the fraction of incorrect ones which
leads us to the conclusion that concept keywords help users
interpret taxonomies. Furthermore, in their responses in

Step 4 all but one of the surveyed students say that the key-
words are helpful. We conclude that LPAM-List can play
an important role in document classification.

5. CONCLUSIONS AND FUTURE WORK
We present two topic models that automatically build lists

of clarifying keywords for each node in a given taxonomy.
Our user study shows that presenting a few of the highest
weighted keywords as concept summaries is beneficial for
taxonomy interpretation. Also, the information rate pro-
duced by LPAM and LPAM-List is significantly better com-
pared to Labeled LDA’s performance.

In future work, we plan to extend LPAM, so that it can
suggest edits to taxonomies. This is an important problem
because new ideas emerge over time and the accompany-
ing taxonomies should be adjusted accordingly. In fact, the
output of LPAM was provided to the committee that edited
the ACM Computing Classification System in 2011. We also
plan to apply LPAM and LPAM-List to the problem of tax-
onomy alignment.
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