INQUER Y and TREC-7
(DRAFT—Workshop notebook version)

James Allan, Jamie Callan, Mark Sanderson, Jinx Xu, Steven Wegmann*

Center for Intelligent Information Retrieval
Department of Computer Science
University of Massachusetts
Amherst, Massachusetts USA

*Dragon Systems, Inc.
320 Nevada Street
Newton, Massachusetts USA

This year the Center for Intelligent Information Retrieval (CIIR) at the University of Massachusetts participated in only four of the tracks that were part of the TREC-7 workshop. We worked on ad-hoc retrieval, filtering, VLC, and the SDR track. This report covers the work done on each track successively. We start with a discussion of IR tools that were broadly applied in our work.

1 Tools applied

Although UMass used a wide range of tools, from Unix shell scripts, to PC spreadsheets, three major tools were applied across almost all tracks: the Inquery search engine, the InRoute filtering engine, and a query expansion technique known as LCA. This section provides a brief overview of each of those so that the discussion does not have to repeated for each track.

1.1 Inquery

All tracks other than the filtering track used Inquery[6] as the search engine, sometimes for training, and always for generating the final ranked lists for the test. We used Inquery V3.2, an in-house development version of the Inquery system made available by the CIIR (V3.1). The differences between the two are not consequential for this study.

The current belief function used by Inquery to calculate the belief in term \(t \) within document \(d \) is:

\[
w_{t,d} = 0.4 + 0.6 \times \frac{tf_{t,d}}{tf_{t,d} + 0.5 + 1.5 \frac{\text{length}(d)}{\text{avg len}}} \times \frac{\log \frac{N+0.5}{n_t}}{\log N + 1}
\]

where \(n_t \) is the number of documents containing term \(t \), \(N \) is the number of documents in the collection, "avg len" is the average length (in words) of documents in the collection, length\((d)\) is the length (in words) of document \(d \), and \(tf_{t,d} \) is the number of times term \(t \) occurs in document \(d \).
1.2 InRoute

The InRoute filtering system is based on the same Bayesian inference network model as InQuery. It is designed to operate efficiently in high-volume filtering environments, where incoming documents must be processed rapidly, one at a time. It uses the same document indexing techniques, query language, and scoring algorithms as InQuery. Corpus statistics for the document stream are estimated using an archival corpus or are learned as documents stream by. InRoute also incrementally learns improved profiles [1] and improved thresholds [4], as relevance judgments become available for documents that have been disseminated.

InRoute was used only in the filtering track.

1.3 Local Context Analysis (LCA)

In SIGIR '96, the CIIR presented a new query expansion technique that worked more reliably than previous “pseudo relevance feedback” methods. [17] That technique, Local Context Analysis (LCA), locates expansion terms in top-ranked passages, uses phrases as well as terms for expansion features, and weights the features in a way intended to boost the expected value of features that regularly occur near the query terms.

LCA has several parameters that affect its results. The first is the choice of LCA database: the collection from which the top ranked passages are extracted. This database could be the test collection itself, but is often another (perhaps larger) collection that it is hoped will broaden the set of likely expansion terms. In the discussion below, if the LCA database is not the test collection itself, we identify what collection was used.

LCA's other two parameters are the number of top passages used for expansion, and the number of expansion features added to the query. The LCA features were put into a query construct that allows a weighted average of the features. Assuming \(n \) features, \(f_1 \) through \(f_n \), they are combined as:

\[
\#wsum(1.0 \quad 1.0 \quad f_1 \\
\vdots \quad \vdots \\
1 - (i-1) \times 0.9/s \quad f_i \\
\vdots \quad \vdots \\
1 - (n-1)0.9/s \quad f_n)
\]

Here, \(s \) is scaling factor that is usually equal to \(n \). The weighted average of expansion features is combined with the original query as follows:

\[
\#wsum(1.0 \quad 1.0 \quad \text{original-query} \quad w_{\text{lca}} \quad \text{lca-wsum})
\]

where \(w_{\text{lca}} \) is the weight that the LCA features are given compared to the original query. Note that the final query is a weighted combination of the original query and the expansion features. As will be discussed below, in the SDR track the combination was unintentionally done differently, slightly shifting the balance between the original query and the expansion concepts.

2 Ad-hoc track
recognition and query expansion using local context analysis (LCA) [17]. Phrases are recognized from the topic text (title, description and narrative) using a phrase dictionary and are added to a query. Phrase acquisition and recognition are described in the UMass TREC-6 report[2].

As in TREC-6, query expansion is carried out using a database consisting of TREC volumes 1 to 5 except the Federal Register documents. LCA concepts are extracted from the top 30 passages retrieved from the database for a query. 50 concepts are added to the query with decreasing weights in proportion to their ranks. Referring to the discussion of Section 1.3, for the ad-hoc work we set $s = 70$ and $w_{lca} = 1.25$.

The effectiveness of all query expansion techniques that are based on the top retrieved documents (passages) obviously depends on the quality of the top ranked set of documents (passages). As an attempt to improve the quality of the top ranked set, in TREC-7 we used a filter to modify the ranks of the passages (obtained by normal tf-idf ranking) based on whether a passage contains all the title words of the topic. The idea is that the title words are the essential requirements of relevancy and passages missing any of such words are unlikely to be relevant. The effect of the filter is to rank passages containing all the title words before those missing some title words. This is done using the INQUERY #filreq operator. We call the technique filter-require on the title words (to pass the filter a document is required to match the title words).

2.1 Ad-hoc runs

We submitted three ad-hoc runs in TREC-7. The runs are labeled INQ501, INQ502 and INQ503. Our query processing includes 3 steps:

1. Basic query processing—removing stop words and stop phrases (such as “relevant documents”) from the topic texts. Sentences discussing criteria of non-relevance in the narratives (such as “Documents discussing ...are not relevant”) are also removed. After that, the narratives still contain a lot of verbiage not directly related to relevancy. Therefore we further reduce the size of the narratives by removing the non-content bearing words from them. Words in the narrative of a topic are ranked by the formula

 $$v(t) = freq(t) \times idf(t) \times avtf(t)^{0.7}$$

 where $freq(t)$ is the frequency of t in the narrative, $idf(t)$ is the inverse document frequency of t in the TREC-7 ad-hoc collection and $avtf(t)$ is the average frequency of t in TREC-7 documents when it occurs. Terms with a value less than 0.4 are discarded.

 INQ501 and INQ502 used the title, description and narrative fields. Narrative words are given 30% of the weight of the title and description words. INQ503 used only the title and description fields.

2. Phrase identification (as in TREC6)

3. Query expansion using LCA: adding 50 LCA concepts per query. INQ502 used filter-require on the title words in addition to tf-idf ranking for retrieving the top ranked passages while INQ501 and INQ502 used only tf-idf for that purpose.

2.2 Ad-hoc results of submitted runs

The retrieval results are shown in Table 1. The average precision for INQ501, INQ502 and INQ503 is 0.2739, 0.2839 and 0.2762 respectively.
Table 1: Submitted ad-hoc retrieval runs

2.3 Ad-hoc analysis

This section considers the various stages of query processing and how they impact effectiveness individually and collectively.

2.3.1 Ad-hoc basic processing

Table 2 shows the retrieval results when we only use the basic query processing (i.e., no phrase recognition and no LCA). The results show that retrieval becomes better as queries get longer. However, even very short queries with 2–3 words (the title queries) can still achieve reasonable retrieval performance.

2.3.2 Using phrases in ad-hoc

Table 3 shows that adding phrases to queries causes a modest 3.6% improvement in average precision. The improvement is not statistically significant. This is consistent with our TREC-6 results: phrases can improve retrieval.
Table 2: Basic query processing of ad-hoc queries

2.3.3 Expanding ad-hoc queries

Table 4 shows that query expansion by LCA causes a substantial improvement in average precision. Precision at all document cut-offs are improved as well. The improvement in average precision is 18.5% and statistically significant ($p < 0.05$). This is also consistent with our TREC-6 results: query expansion using LCA can significantly improve retrieval performance.

2.3.4 Filter-require in ad-hoc queries

When filter-require on title words is used for query expansion (INQ502), the average precision is improved by another 2.8% (Table 5). The improvement at low recall is improved more substantially. The technique does not dramatically improve average performance, but it has a significant impact on individual queries. A few queries are significantly improved. One example is topic 335 about “hybrid fuel cars”. Standard tfidf ranking tends to pick up passages containing many occurrences of “fuel” and “cars” but missing “hybrid”, an essential element of relevance for this query. Filter-require corrects this problem by requiring the top ranked passages to contain “hybrid”. As a result, it results in more effective query expansion. But a few
Run: title_desc_narr title_desc_narr_phr
Total number of documents over all queries
Retrieved: 50000 50000 (+ 0.0)
Relevant: 4674 4674 (+ 0.0)
Rel_retr: 2712 2753 (+ 1.6)

Interpolated Recall - Precision Averages at:
0.00 0.8046 0.8003 (- 0.5)
0.10 0.5630 0.5483 (- 2.6)
0.20 0.4100 0.4058 (- 1.0)
0.30 0.3036 0.3179 (+ 4.7)
0.40 0.2262 0.2476 (+ 9.5)
0.50 0.1603 0.1880 (+ 4.3)
0.60 0.1241 0.1367 (+10.2)
0.70 0.0762 0.0914 (+19.9)
0.80 0.0333 0.0530 (+59.2)
0.90 0.0123 0.0242 (+96.7)
1.00 0.0004 0.0086 (+2050.0)

Average precision (non-interpolated) over all rel doc
 0.2231 0.2311 (+ 3.6)

Precision at:
5 docs: 0.5400 0.5320 (- 1.5)
10 docs: 0.5120 0.5200 (+ 1.6)
15 docs: 0.4640 0.4827 (+ 4.0)
20 docs: 0.4290 0.4350 (+ 1.4)
30 docs: 0.3727 0.3887 (+ 4.3)
100 docs: 0.2154 0.2242 (+ 4.1)
200 docs: 0.1568 0.1603 (+ 2.2)
500 docs: 0.0884 0.0910 (+ 2.9)
1000 docs: 0.0542 0.0561 (+ 1.7)

R-Precision (precision after R (= num_rel for a query) docs retrieved):
Exact: 0.2712 0.2745 (+ 1.2)

Table 3: Addition of phrases to ad-hoc queries

3 Filtering Track

Our goal for the Filtering track was to test the InRoute filtering system [5] and the threshold-learning algorithm that we used last year [2, 4]. These were relatively modest goals, because there seemed to be significant changes from last year's system.

One obvious departure from last year's system was that the user preference that influences threshold settings was raised to "high precision"; last year it was set halfway between "high precision" and "high recall", and results were reasonably good. Studies during the Winter and Spring indicated that raising the preferences was risky, because they pushed up the dissemination thresholds, which in turn reduced the amount of training data available to the system.

A second difference is that the initial queries for this year's system were intended to more closely match the query-creation process used for the Ad-hoc track. In the past, the initial filtering queries were very simple. Our hypothesis was that the initial query should be as good as possible, and then be further modified by incremental relevance feedback on documents disseminated during filtering.
Table 4: Query expansion (LCA) of ad-hoc queries

<table>
<thead>
<tr>
<th>Run: title_desc_narr_phr</th>
<th>INQ501</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of documents over all queries</td>
<td></td>
</tr>
<tr>
<td>Retrieved: 50000</td>
<td>50000 (+ 0.0)</td>
</tr>
<tr>
<td>Relevant: 4674</td>
<td>4674 (+ 0.0)</td>
</tr>
<tr>
<td>Rel_ret: 2753</td>
<td>3206 (+16.5)</td>
</tr>
<tr>
<td>Interpolated Recall - Precision Averages at:</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.8003 0.7823 (-2.2)</td>
</tr>
<tr>
<td>0.10</td>
<td>0.5483 0.5883 (+7.3)</td>
</tr>
<tr>
<td>0.20</td>
<td>0.4058 0.4526 (+11.6)</td>
</tr>
<tr>
<td>0.30</td>
<td>0.3179 0.3656 (+15.0)</td>
</tr>
<tr>
<td>0.40</td>
<td>0.2476 0.3101 (+25.2)</td>
</tr>
<tr>
<td>0.50</td>
<td>0.1880 0.2490 (+32.4)</td>
</tr>
<tr>
<td>0.60</td>
<td>0.1367 0.1919 (+40.4)</td>
</tr>
<tr>
<td>0.70</td>
<td>0.0914 0.1393 (+62.4)</td>
</tr>
<tr>
<td>0.80</td>
<td>0.0630 0.0893 (+68.5)</td>
</tr>
<tr>
<td>0.90</td>
<td>0.0242 0.0417 (+72.3)</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0086 0.0175 (+103.5)</td>
</tr>
<tr>
<td>Average precision (non-interpolated) over all rel docs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2311 0.2739 (+18.5)</td>
</tr>
</tbody>
</table>

Precision at:
- 5 docs: 0.5320 0.5760 (+8.3)
- 10 docs: 0.5200 0.5540 (+6.5)
- 15 docs: 0.4827 0.5240 (+8.6)
- 20 docs: 0.4350 0.4850 (+11.5)
- 30 docs: 0.3887 0.4240 (+9.1)
- 100 docs: 0.2242 0.2502 (+11.6)
- 200 docs: 0.1603 0.1833 (+14.3)
- 500 docs: 0.0910 0.1063 (+16.8)
- 1000 docs: 0.0561 0.0641 (+16.3)

R-Precision (precision after R (num_rel for a query) docs retrieved):
- Exact: 0.2745 0.3117 (+13.6)

hence no documents were disseminated for many profiles. It also reduced the amount of training data available for learning profiles, resulting in less accurate profiles. Lowering the preference to last year's value causes more documents to be disseminated for more profiles; the resulting increase in training data leads to dramatic precision improvements on many profiles. This accounts for some of the poor filtering results, but not all.

The use of more complex initial queries may also have been a factor, but we have not yet had an opportunity to investigate this change sufficiently to draw any conclusions.

4 Spoken Document Retrieval track

This section describes the work by CIIR on the SDR track. Repeating the partnership from last year's TREC submission with Dragon Systems, the CIIR submitted a number of runs primarily investigating alternate configurations of the retrieval system, Inquery. This centered on investigating different sources of evidence for use in automatic query expansion. The experimental set up of the system is first described followed by an outline of each configuration tested. The results of the experiments are presented and
<table>
<thead>
<tr>
<th>Run:</th>
<th>INQ501</th>
<th>INQ602</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of documents over all queries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrieved:</td>
<td>50000</td>
<td>50000</td>
</tr>
<tr>
<td>Relevant:</td>
<td>4674</td>
<td>4674</td>
</tr>
<tr>
<td>Rel_ret:</td>
<td>3206</td>
<td>3215</td>
</tr>
</tbody>
</table>

Interpolated Recall - Precision Averages at:

<table>
<thead>
<tr>
<th>Recall</th>
<th>INQ501</th>
<th>INQ602</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.7823</td>
<td>0.8314</td>
<td>+ 6.3</td>
</tr>
<tr>
<td>0.10</td>
<td>0.5883</td>
<td>0.6070</td>
<td>+ 3.2</td>
</tr>
<tr>
<td>0.20</td>
<td>0.4526</td>
<td>0.4579</td>
<td>+ 1.2</td>
</tr>
<tr>
<td>0.30</td>
<td>0.3656</td>
<td>0.3848</td>
<td>+ 5.3</td>
</tr>
<tr>
<td>0.40</td>
<td>0.3101</td>
<td>0.3269</td>
<td>+ 5.4</td>
</tr>
<tr>
<td>0.50</td>
<td>0.2490</td>
<td>0.2571</td>
<td>+ 3.3</td>
</tr>
<tr>
<td>0.60</td>
<td>0.1919</td>
<td>0.1906</td>
<td>- 0.7</td>
</tr>
<tr>
<td>0.70</td>
<td>0.1393</td>
<td>0.1414</td>
<td>+ 1.5</td>
</tr>
<tr>
<td>0.80</td>
<td>0.0893</td>
<td>0.0790</td>
<td>-11.5</td>
</tr>
<tr>
<td>0.90</td>
<td>0.0417</td>
<td>0.0449</td>
<td>+ 7.7</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0175</td>
<td>0.0175</td>
<td>+ 0.0</td>
</tr>
</tbody>
</table>

Average precision (non-interpolated) over all rel doc

<table>
<thead>
<tr>
<th></th>
<th>INQ501</th>
<th>INQ602</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2739</td>
<td>0.2815</td>
</tr>
</tbody>
</table>

Precision at:

<table>
<thead>
<tr>
<th>Precision</th>
<th>INQ501</th>
<th>INQ602</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 docs</td>
<td>0.5760</td>
<td>0.6160</td>
<td>+ 6.9</td>
</tr>
<tr>
<td>10 docs</td>
<td>0.5540</td>
<td>0.5800</td>
<td>+ 4.7</td>
</tr>
<tr>
<td>15 docs</td>
<td>0.5240</td>
<td>0.5333</td>
<td>+ 1.8</td>
</tr>
<tr>
<td>20 docs</td>
<td>0.4850</td>
<td>0.4950</td>
<td>+ 2.1</td>
</tr>
<tr>
<td>30 docs</td>
<td>0.4240</td>
<td>0.4347</td>
<td>+ 2.5</td>
</tr>
<tr>
<td>100 docs</td>
<td>0.2502</td>
<td>0.2572</td>
<td>+ 2.8</td>
</tr>
<tr>
<td>200 docs</td>
<td>0.1833</td>
<td>0.1840</td>
<td>+ 0.4</td>
</tr>
<tr>
<td>500 docs</td>
<td>0.1063</td>
<td>0.1070</td>
<td>+ 0.7</td>
</tr>
<tr>
<td>1000 docs</td>
<td>0.0641</td>
<td>0.0643</td>
<td>+ 0.3</td>
</tr>
</tbody>
</table>

R-Precision (precision after R (= num_rel for a query) docs retrieved):

<table>
<thead>
<tr>
<th></th>
<th>INQ501</th>
<th>INQ602</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>0.3117</td>
<td>0.3178</td>
<td>+ 2.0</td>
</tr>
</tbody>
</table>

Table 5: Use of filter-require on ad-hoc runs

4.1 Recognition

The TREC-7 system used by Dragon is a faster version of their 1997 Hub4 evaluation system, and it was also used to transcribe 1000 hours of broadcast data automatically for the TDT task. This system is fully described in [11] and [12], but we give a brief description here.

4.1.1 Front End

A total of 36 parameters are computed every 10 milliseconds: 12 cepstral parameters, 12 cepstral differences, and 12 cepstral second differences. This set of 36 parameters is linearly transformed using IMELDA techniques [8] to a set of 24 parameters which are used for training and recognition. We use PLP-based cepstra [14], computed in the style of Cambridge/HTK, as reported in [9].

Speaker normalization [10] is used to reduce variability among speakers due to vocal tract length. During the signal processing stage, the frequency scale is “warped” using a piecewise linear transformation.
4.1.2 Acoustic Modeling

The model for a sentence hypothesis is obtained by concatenating models Dragon calls PICs (for “phonemes-in-context”). For this evaluation, Dragon used triphone models as described below. A 51-element phoneme set was used that has syllabic consonants and two stress levels for certain vowels. PICs are modeled using from 3 to 4 nodes, with each node having an output distribution (PEL) and a duration distribution. Which PEL model to employ for any given position of any PIC is determined based on a decision tree whose nodes ask linguistic questions about neighboring phonemes as well as questions about the position of word boundaries. The PEL models themselves are general mixture models with basis components given by multivariate Gaussian distributions with diagonal covariance.

In addition to speaker normalization, Dragon also makes use of rapid adaptation, using linear regression techniques to construct transformations of acoustic parameter space mapping speaker-independent model means to speaker-specific ones. This approach was inspired by, and represents a simplification of, speaker adaptation strategies implemented by Cambridge [15]. Dragon also used speaker adaptation techniques (SAT) during training ([7, 16]): Training speech is force-aligned to transcripts and the usual adaptation transformations are computed mapping speaker-independent model to speaker-specific data, and then a sort of “inverse” transformation is performed on the speech frames. This permits the training of models with the transformed data which should behave well under test-time adaptation. Dragon used four transformation classes at training, determined by grouping related phonemes. (For another approach to speaker-adaptive training, see [13].)

A thumbnail sketch of the system used follows.

1. The system overall:
 - A amplitude based silence detector is used to break the input into chunks that are 20 to 30 seconds long.
 - A phoneme recognizer is used to produce a more refined chopping of these chunks.
 - The segments are clustered for speaker normalization and unsupervised adaptation.
 - Channel normalization is performed on each segment.
 - Speaker normalization is performed within each cluster by doing a quick, errorful recognition with small acoustic models (5000 PELs) and a small bigram LM (300,000 bigrams), and then rescoring this transcript with each warp scale in order to pick the best scoring scale.
 - Speaker normalized, SAT models with 12,000 PELs are used along with an interpolated trigram LM to obtain an initial transcription for each cluster.
 - Unsupervised rapid adaptation is performed within each cluster, followed by the final recognition pass using the adapted acoustic models and the same trigram LM.

2. Acoustic training:
 - Used the 100 hours of Broadcast News training data to train the seed models for the SAT process.
 - The SAT models were trained from the above data plus the following:
 - A 24 hour subset of the WSJ1 si284 corpus.
 - The WSJCAM0 training corpus.
 - The 1995 Marketplace development corpus.
• The Broadcast News LM training corpus.
• The 1995 Hub4 and Hub3 newswire texts were combined with 190 million words of commercially available newspaper data collected from the period January 1995 through June 1996.

4. Recognition lexicon description:

• The three LMs share a 57K vocabulary list constructed by mixing the unigram probabilities from the three LM’s and selecting the top 57K words.
• The mixture weights were determined from preliminary recognition runs on the 1996 devtest: 0.30 for A, 0.50 for B, and 0.20 on C.

5. Speed:

• The entire system ran at 16 x RT on a 300 MHz P-II.

4.2 Experimental components

Retrieval was performed using the Inquiry IR system (see Section 1.1). In addition to use of standard IR techniques such as stop word removal, stemming and a tf{idf}-like weighting scheme, Inquiry was set up to use two additional proven methods.

First, SDR topics were pre-processed where phrases within the topics were recognized and some proper nouns were expanded with synonyms. This type of processing is the same that was done for the ad-hoc queries, and is described in last year’s report.[2]

Second, SDR topics were automatically expanded using Local Context Analysis (LCA), essentially as described in Section 1.3. The difference is that the expansion terms were added to the query as “siblings” of the query features rather than balancing the two in an overall weighted sum. The combined version of the query therefore had the form:

\[
\text{#wsum(1.0 } w_{q_1} q_1 \\
\vdots \quad \vdots \\
\vdots \quad \vdots \\
\vdots \quad \vdots \\
1.0 \quad f_1 \\
\vdots \quad \vdots \\
1 - (i - 1) * 0.9 / s \quad f_i \\
\vdots \quad \vdots \\
1 - (n - 1) * 0.9 / s \quad f_n)
\]

where \(q_i \) are the original query features (after processing) and \(w_{q_i} \) is the weight assigned to that feature. In the case of SDR, 60 expansion features were added, expansion weights were assigned with \(s = 60 \). We have not yet run experiments to determine the impact of this different use of the LCA features, though we do not expect the difference will be large.
1. The default configuration of just using the collection being searched on: e.g., this year’s SDR test collection as recognized by the Dragon speech recognizer. This was the strategy used in the umass-b1.dragon, umass-b2.dragon, umass-r1.dragon, umass-s1.dragon runs.

2. A combination of the SDR recognized collection and a corpus of AP newswire documents produced at the same time as the SDR audio broadcasts were made. This was the approach used in the umass-s2.dragon run.

3. A combination of different versions of the SDR collection each version produced by a different speech recognizer. The Sheffield, Cambridge, Dragon, NIST-B1 and DERASRU recognizer transcripts were used. It was hoped that the different recognizers would make different recognition mistakes and that by combining the transcripts the mistakes would be less prevalent and, therefore, the expanded query would produce better retrieval. This approach was used in a number of additional runs that were not assessed by TREC.

In experiments on the SDR training set, this final strategy proved to be the most successful of the three. Results on the test set, however, proved to be different.

4.3 Main SDR results

The best retrieval effectiveness on the test collection was found on the umass-s1-dragon run. The average (non-interpolated) precision for this run was 0.5075, which was 89% the effectiveness of the r1 (hand transcribed) reference run: 0.5668. Such a result indicates that retrieval on audio data of the quality used in the SDR collection can be expected to be almost as good as retrieval on a hand transcribed version.

Comparison of the overall “Best, Median, Worst” statistics (compiled by TREC from all of the groups’ data) against the s1 result revealed that s1 had the best average precision for 6 of the 23 topics, above median for 13, median for 1 and below the median for 3. We anticipate this represents acceptable performance.

It was noted that the b1 run, using the NIST good quality recognizer, had about the same effectiveness as the s1 run, suggesting that the word error rate of the Dragon recognizer was on a par with the NIST recognizer. Cambridge University coordinated a pre-conference sharing of results and by comparing other group’s effectiveness for their s1 and b1 runs, it appears that the Dragon transcript was not the most accurate used in this year’s TREC. Sheffield and Cambridge both achieved higher effectiveness on their s1 runs compared to their b1 runs indicating that they had better recognizers. However, both of these groups had retrieval effectiveness results that were worse than our s1 run, indicating that Inquery was a more accurate retrieval system than that used at other sights.

4.4 Cross-recognizer runs

The CIIR had interpreted the cross-recognizer run description to allow a run such as the final approach listed earlier, where we combined the results of several recognizer outputs to help generate higher-quality expansion features. (It does not appear to have worked.) The TREC evaluation process chose to eliminate our run because—although it was a valid interpretation of the request—there were no similar runs to compare it to!

We have meanwhile begun the process of comparing our main approach across different recognizer outputs. As of this writing, the results are incomplete; what we have completed is presented below. All numbers are non-interpolated average precision.
<table>
<thead>
<tr>
<th>Recognizer</th>
<th>WER</th>
<th>Basic QP</th>
<th>With LCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human (lit)</td>
<td>-</td>
<td>0.5240</td>
<td></td>
</tr>
<tr>
<td>Dragon</td>
<td>29.8</td>
<td>0.4711</td>
<td></td>
</tr>
<tr>
<td>NIST-B1</td>
<td>35.2</td>
<td>0.4581</td>
<td></td>
</tr>
<tr>
<td>NIST-B2</td>
<td>47.8</td>
<td>0.3725</td>
<td></td>
</tr>
<tr>
<td>Sheffield</td>
<td></td>
<td>0.4551</td>
<td></td>
</tr>
<tr>
<td>Cambridge</td>
<td>24.8</td>
<td>0.5001</td>
<td></td>
</tr>
<tr>
<td>DERASRU</td>
<td></td>
<td>0.3598</td>
<td></td>
</tr>
</tbody>
</table>

In all cases, the same techniques were applied. When LCA was used, it was used on the same database that was being run against.

4.5 Other results

The s2 run, which used AP news wire as an additional source of LCA expansion terms proved to be worse than s1. The use of other groups transcripts in the LCA process proved to be even more detrimental to retrieval effectiveness than the s2 run. Further analysis of these two results is currently being undertaken.

5 Very Large Corpus (VLC) Track

Our goals for the Very Large Corpus (VLC) track were modest: To gain experience with a larger corpus, and to contribute to the large-scale corpus-building effort by adding documents to the assessment pool.

Retrieval speed was not a research goal. The Inquery system, version 3.1, was used, with no special optimizations.

It was also not a goal to be the most accurate system. The queries created for the Ad-hoc track were used in the VLC track. Ordinarily query expansion with Local Context Analysis (LCA) is database-specific, but in the interests of doing the track with minimal effort, we simply used the query expansion terms created for the Ad-hoc track. Our hypothesis, based on other work with LCA, is that using the VLC database(s) for query expansion would produce more effective results.

5.1 VLC Query Sets

Three sets of queries were developed. All three are of the “Fixed Query” type, because query expansion was done on a separate database (the Ad-hoc database), as described above. The queries were:

inq5vlc1: The INQ501 query set, described above, which used the Title, Description, and Narrative fields;

inq5vlc2: The INQ502 query set, described above, which used the Title, Description, and Narrative fields;

and

inq5vlc3: The INQ503 query set, described above, which used the Title and Description fields.

The judged runs were all done on inq5vlc1, because we believed it would be the most accurate query set.

5.2 Indices

The BASE1 collection was indexed as a single database.
Various data buffer size and index word size constraints prevented building the larger collections into a single database (in particular, the VLC2 collection contains more tokens than can be counted in a 32 bit word). Although these constraints could have been overcome, a multi-database approach fit more naturally with our other research interests, and was hence the approach adopted.

The BASE10 collection was indexed as two databases. Each indexed used its own idf values, i.e., global idf values were not created. Although this makes document scores slightly incompatible, it was assumed that queries would be long enough to minimize problems.

The VLC2 collection was indexed as 16 databases. As with the BASE10 collection, each index used its own idf values, i.e., global idf values were not created.

Indexing was done on a multi-user system during ordinary daily use, so little can be said about Inquery's indexing speed or resource requirements. It was not practical to devote one or more computers to the VLC effort; nor was it necessary, as Inquery is quite capable of handling this volume of data on a machine being used by a number of other processes.

VLC2 indexing, from initiation to completion, took 43 hours and 36 minutes, with 4 processors busy for almost all that time, and some competition from other users and tasks. About 8 hours and 9 minutes of that time was spent uncompressing data. Different parts and stages of the build were running in parallel on the 3 processors of the computer, with an attempt to keep all processors busy without thrashing. Because of limited disk space, uncompress versions of bundles were created as needed and then deleted immediately after use. All of the processes used were “nice”. The computer used was a Sun Sparc server with 4 processors each running at 167 MHz and 1000 MB of memory.

The BASE10 build required 26:09 on the same processors but was overlapped with the VLC2 build for 14:30 of those hours.

The BASE1 build took 2:40 including recompressing the source collection (the other builds made uncompressed copies and removed them; this build actually recompressed the bundles after using them, taking much longer).

The indices required 0.68 gigabytes for BASE1, 6 gigabytes for BASE10, and 53 gigabytes for VLC2.

5.3 Retrieval

The BASE1 collection was organized as a single index. Queries were run against that index.

The BASE10 and VLC2 collections were organized as multiple indices. Queries were run against all indices associated with a collection. Document rankings from each index were merged to produce a final ranking for the collection.

The approach to merging document rankings was quite simple. The top-ranked 20 documents from each index were candidates for the final result set. These 20-document rankings were merged based upon the document scores. No attempt was made to normalize the scores returned by each index, or to favor documents returned by the “better matching” index.

Retrieval was done on a multi-user system during ordinary daily use, so little can be said about Inquery's retrieval speed or resource requirements. Inquery is clearly not one of the faster systems doing the VLC track. Based upon last year’s results, it is also likely that Inquery uses longer queries than most of the other groups. The timing figures shown below are ‘wall-clock’ times.
The retrieval results appear to have been quite good. Precision at 20 documents is shown below.

<table>
<thead>
<tr>
<th></th>
<th>inq5vlc1</th>
<th>inq5vlc2</th>
<th>inq5vlc3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE1</td>
<td>7 min</td>
<td>8 min</td>
<td>6 min</td>
</tr>
<tr>
<td>BASE10</td>
<td>71 min</td>
<td>74 min</td>
<td>45 min</td>
</tr>
<tr>
<td>VLC2</td>
<td>593 min</td>
<td>598 min</td>
<td>438 min</td>
</tr>
</tbody>
</table>

We haven't done any interesting post-hoc analysis at this point.

Acknowledgements

We thank Daniella Malin, Michael Scudder, Fang-fang Feng, Chilinga Musonda, and Karen Priore of the CIHR, as well as Steven Wegmann of Dragon Systems for their assistance in the work described here.

This study is based on research support by several grants: the National Science Foundation, Library of Congress and Department of Commerce under cooperative agreement number EEC-9209623; the National Science Foundation under grant number IRI-9619117; and the NSF Center for Intelligent Information Retrieval at the University of Massachusetts, Amherst.

Any opinions, findings and conclusions or recommendations expressed in this material are the authors' and do not necessarily reflect those of the sponsors.

References

