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ABSTRACT
Incorporating conventional, unsupervised features into a neural
architecture has the potential to improve modeling e�ectiveness,
but this aspect is o�en overlooked in the research of deep learning
models for information retrieval. We investigate this incorpora-
tion in the context of answer sentence selection, and show that
combining a set of query matching, readability, and query focus
features into a simple convolutional neural network can lead to
markedly increased e�ectiveness. Our results on two standard
question-answering datasets show the e�ectiveness of the com-
bined model.
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1 INTRODUCTION
Deep learning approaches have recently become a central method-
ology in the research of question answering (QA). Many recent
a�empts in this area have focused on utilizing neural architectures,
such as convolutional neural networks (CNN) [8, 19], long short-
term memory networks [12], or a�ention mechanisms [15, 18],
to explicitly model high-level question-answer structures. �ese
advances outperform conventional approaches, which are based
on engineered heuristics. However, whether deep learning will
completely remove the need for such features remains an open
question.
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�e lack of understanding as to whether the features are needed
in a neural architecture is what we address in this paper. While
the development of new models for question answering has been
moving rapidly ahead in the past few years, a wealth of proven
useful results from prior art [2, 9, 10, 16] were usually ignored.
Recently, there has been some evidence pointing a value in using
features [11, 19] in neural network models. Commonly used neural
network substructures, such as multilayer perceptrons [3], have
the capability to combine a large number of external features, so in-
corporating all available signals in a neural network could improve
e�ectiveness and provide robust measurement of any e�ect [1].

In this paper, we expand on past work using an extensive set
of experiments. We demonstrate that, by incorporating a list of 21
common text features into a state-of-the-art CNN model, one can
achieve an e�ectiveness comparable to the currently best reported
results on the TREC QA dataset and the WikiQA data.

2 EXTERNAL FEATURES
Our hypothesis is that one can assist relevance modeling with a
set of external features to capture aspects of the data that are dif-
ferent to those captured in a neural network model. �e chosen
set of features should also cover basic signals that can be easily
reproduced and implemented. In our experiments, we se�le on a
set of simple features known to be useful for question answering.
We focus on retrieval and readability features. �ere are two moti-
vations for this approach: 1) such features are be�er understood by
information retrieval practitioners, and 2) they are relatively cheap
to implement. �us, we precluded the use of some sophisticated
NLP features in our experiments, such as convolutional tree kernel
[11] or syntactic similarity [10].

�e full list of features is given in Table 1, they are divided into
three categories.

Lexical and semantic matching. �e �rst group of features ad-
dress non-factoid question answering, described Yang et al. [16],
were �rst selected, which cover topical relevance and semantic
relatedness measures. �e reference package released by Yang et
al. was used in our implementation. For computing the language
model and BM25 scores, we empirically set both µ in the language
model and the average document length in BM25 to a �xed value
of ten.

Readability. �e second group of features focus on text readabil-
ity [5], which is a set of seven common surface readability features,
such as number of words/syllables per sentence or the complex-
word ratio, plus one feature representing the notable Dale-Chall
readability formula. We did not include other readability indices as
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Table 1: List of unsupervised features used in this study

Lexical and semantic matching
Length Number of terms in the sentence
ExactMatch Whether query is a substring
Overlap Fraction of query terms covered
OverlapSyn Fraction of query synonyms covered
LM Language model score
BM25 BM25 score
ESA Cosine similarity with the query ESA vector
TAGME Overlap between query/sentence entities
Word2Vec Cosine similarity with query word vectors
Readability
CPW Number of characters per word
SPW Number of syllables per word
WPS Number of words per sentence
CWPS Number of complex words per sentence
CWR Fraction of complex words
LWPS Number of long words per sentence
LWR Fraction of long words (> 7 chars)
DaleChall �e Dale-Chall readability index
Focus
MatchedNGram Maximum semantic relatedness between head

question k-gram and any answer n-gram.
See (1); 4 variants of (k,n) were used

most of these indices can be represented as a linear combination of
the surface features.

Focus. �e third group of features used four parameterized vari-
ants of a newly proposed feature MatchedNGram to account for the
matching between question head words and the potential answer
n-gram. �e feature takes the maximum of the semantic similarity
between the �rst k question words and any n-grams in the answer,
using the cosine similarity between question/answer word vectors
as the similarity measure. Given k and n, the feature is de�ned as
follows:

MatchedNGram(Q,A) = max
l

cos
[∑k

i=1 ~qi ,
∑l+n−1

j=l
~aj

]
. (1)

�is simple feature explicitly looks for best matching answer
n-grams with respect to question head phrases, such as “who in-
vented”, “how many”, or “what year did”. Word embeddings are
leveraged in the computation of the similarity measure. Also, not
all combinations of (k,n) are found e�ective. In our experiments,
we empirically chose four best con�gurations of (k,n), which are
{(k,n) | k ∈ {2, 3}, n ∈ {2, 3}}, based on their e�ectiveness within a
learning-to-rank model.

3 EXPERIMENTS
Our evaluation was based on two widely used question answering
benchmarks: the TREC QA and the WikiQA datasets. �e �rst
benchmark was originally developed for the task of identifying
correct answer factoids in retrieved passages. We used the version
prepared by Wang et al. [13], with 1,229 questions in the larger

training set, 82 in the dev set, and 100 in the test set. No further
�ltering was performed on the data (the “raw” se�ing [7]).1

�e second benchmark, WikiQA, was created by Yang et al.
over the English Wikipedia summary passages and the Bing query
logs [17], with crowdsourced annotations. �is new benchmark is
developed to counter biases introduced in the creation TREC QA:
the reliance on using lexical overlap with the question as the sole
indication of a candidate answer. Hence, this dataset is by design
made more challenging for retrieval based methods. Some major
follow-up works [7, 18] used a split that includes questions with all
positive labels, a version slightly di�erent from the split distributed
in the original data. We used the same split as in Rao et al. and
used 873 questions in the training set, 126 in the dev set, and 243 in
the test set [7].

3.1 Neural Network Con�guration
For the choice of a base system, which would serve as the experi-
mental control, we chose to implement a bi-CNN architecture as
proposed in Severyn and Moschi�i [8]. �is state-of-the-art model
is preferred over other candidates, i.e., a�ention-based CNN [18],
for the ease of implementation and parameter optimization. �is
architecture is fairly robust and in most cases overly excessive
parameter tuning is not required.

Convolutional Neural Networks. Our implementation follows
closely to the experimental se�ing in the original paper. Two sets
of word embeddings were used: one with 50 dimensions, developed
on top of English Wikipedia and the AQUAINT corpus [8], and the
other a 300-dimension pre-trained model released by the word2vec
project, using 100-billion words from Google News. �e sparse
word overlapping indicator features were also used in the convolu-
tional layer [11]. �e proposed 21 features were incorporated in the
fully-connected layer which also combines pooled representations
for the question and the answer sentences. �e size of the kernel is
set to 100 throughout the experiments. We used hyperbolic tangent
tanh as the activation function and max pooling in the pooling
layer. �e network is trained by using stochastic gradient descent
with mini batches. �e batch size is set to 50 and AdaDelta update
[20] was used with ρ = 0.95. Early stopping was deployed tracking
the change of dev set e�ectiveness, and as a result the training al-
most always stopped in 5 to 10 epochs. We also experimented with
dropout in two experimental runs by sweeping through a small set
of dropout rates {0.1, 0.2, . . . , 0.9}.

�e a�ention mechanism can also a�ect the e�ectiveness of the
neural network model. To control for this variable, we implemented
a simple a�ention layer in the base CNN model to approximate the
ABCNN-1 model, which is the simplest form of a�ention mecha-
nism proposed in Yin et al [18]. In mathematical terms, an a�ention
layer takes a question-side feature map Fq ∈ Rnq×d and an answer-
side feature map Fa ∈ R

na×d as input. Here, nq and na denote
the maximum question/answer sentence length, respectively, and
d denotes the dimension of the word embeddings.

1Some previous work chose to remove questions that contain no answers and led to
two inconsistent data splits “raw” an “clean”, so results on one split are not directly
comparable to those on the other [7].
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Table 2: E�ectiveness results on TREC QA andWikiQA datasets. Best-performing runs in each word-embedding group are un-
derlined and the overall best result on individual benchmarks printed in boldface. Relative improvements (+/-%) are measured
against the group control (base system). Signi�cant di�erences with respect to bagged LambdaMART and the group control
are indicated by †/‡and ∗/∗∗, respectively, for p < 0.05/p < 0.01 using the paired t-test.

TREC QA WikiQA
System A�n? Drop? MAP MRR S@1 MAP MRR S@1
Runs (AQUAINT/Wikipedia)
CNN × × 76.2 80.9 73.7 66.0 67.4 52.3
Combined Model × × 77.9 (+2.2%) 82.2 (+1.6%) 74.7 (+1.4%) 67.2 (+1.8%)‡ 68.5 (+1.6%)‡ 53.9 (+3.1%)‡
Combined Model × X 78.2 (+2.6%) 83.7 (+3.5%) 76.8 (+4.2%) 64.7 (-2.0%) 65.7 (-2.5%) 48.6 (-7.1%)
CNN X × 75.4 79.9 71.6 65.3 66.8 52.7
Combined Model X × 77.2 (+2.4%) 81.1 (+1.5%) 72.6 (+1.4%) 70.0 (+7.2%)‡∗ 71.4 (+6.9%)‡∗ 58.4 (+10.8%)‡∗
Combined Model X X 77.3 (+2.5%) 82.0 (+2.6%) 74.7 (+4.3%) 69.0 (+5.7%)‡ 70.9 (+6.1%)‡∗ 58.4 (+10.8%)‡

Runs (Google News)
CNN × × 76.1 82.3 75.8 67.3 69.1† 57.2‡
Combined Model × × 73.8 (-3.0%) 79.2 (-3.8%) 70.5 (-7.0%) 69.2 (+2.8%)‡ 70.2 (+1.6%)‡ 56.0 (-2.1%)‡
Combined Model × X 74.8 (-1.7%) 80.1 (-2.7%) 71.6 (-5.5%) 69.2 (+2.8%)‡ 70.7 (+2.3%)‡ 56.4 (-1.4%)‡

CNN X × 75.0 81.1 73.7 66.3 68.3 54.7‡
Combined Model X × 76.5 (+2.0%) 82.5 (+1.7%) 74.7 (+1.4%) 69.4 (+4.7%)‡ 71.2 (+4.2%)‡ 57.6 (+5.3%)‡
Combined Model X X 76.3 (+1.7%) 82.5 (+1.7%) 74.7 (+1.4%) 67.9 (+2.4%)‡ 69.7 (+2.0%)‡ 56.0 (+2.4%)‡

Reference methods
Bagged LambdaMART 75.7 81.3 72.6 63.0 63.8 46.5
LSTM [12] 71.3 79.1 — —
CNN [8] 74.6 80.8 — —
aNMM [15] 75.0 81.1 — —
ABCNN-3 [18] — — 69.2 71.1
PairwiseRank + SentLevel [7] 78.0 83.4 70.1 71.8

�ematrixA ∈ Rnq×na representing the “a�ention” is computed
internally to the layer as follows:

Ai, j =
1

1 + ‖Fq [i, :] − Fa[j, :]‖
, (2)

with ‖·‖ being the euclidean distance function. �en, the layer
generates two new a�ention-based feature maps, F′q and F′a , which
are to be combined in the follow-up convolutional layers:

F′q = AWq F′a = AT Wa , (3)

whereWq ∈ R
na×d andWa ∈ R

nq×d denote model weights which
are to be learned from the data.

3.2 Baselines
Anumber of published results were included as reference runs in the
experiments [8, 12, 15, 18], including a recently proposed neural
model PairwiseRank [7]. For comparing with learning-to-rank
systems, a Bagged LambdaMART model trained using RankLib2
over the 21 sentence features is included. �e bagged LambdaMART
was trained by optimizing NDCG@20 with subsampling rate 0.7,
feature sampling rate 0.3, using 300 bags.

2h�ps://www.lemurproject.org/ranklib.php

3.3 Results
Table 2 gives the e�ectiveness results for the TREC QA and the
WikiQA datasets. �e e�ectiveness of answer selection is mea-
sured by Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), and Success at 1 (S@1), using the trec eval package fol-
lowing Severyn and Moschi�i [8]. �e experimental runs are di-
vided into four groups, according to the word embeddings in use
(AQUAINT/Wikipedia or Google News) and whether the a�ention
mechanism is enabled. In each group, the original CNN model is
the experimental control, and runs with external features combined
(denoted as Combined Model) are the treatments.

On both sets of data, the PairwiseRank model gives the best
results. �e baseline bagged LambdaMART model appears to be
strong on the TREC QA data, beating a number of neural network
models, but it does not appear particularly e�ective on the more
challenging WikiQA dataset.

Our base CNN model is found to be superior to the learning-to-
rank model, and it gave be�er results than the original implemen-
tation [8] on the TREC QA benchmark. In general, the Combined
Model reliably improves the base CNN model. All experimental
con�gurations appear to bene�t from the inclusion of the 21 extra
features, with two exceptions: runs using GoogleNews embeddings
on the TREC QA benchmark, and one of the dropout runs on the

https://www.lemurproject.org/ranklib.php
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WikiQA data. On the TREC QA benchmark, we saw an increase
of 1.3%–4.3% in the three evaluation metrics. On WikiQA, the in-
crease is around 1.6%–7.2% in MAP/MRR and 2.4%–10.8% in S@1.
�ese increases are in most cases consistent with each other, except
that in one particular con�guration a decreased S@1 is observed
alongside improved MAP and MRR scores.

�e AQUAINT/Wikipedia embeddings appear to have a slight
advantage over the Google News embeddings. �e best performing
runs on both benchmarks using this embedding achieved a marked
increased in e�ectiveness compared to the best known results. On
the TREC QA benchmark, however, the Combined Model with
dropout surpassed the PairwiseRank model [7] in both MAP and
MRR. On WikiQA, the Combined Model with the a�ention mecha-
nism outperformed ABCNN-3 (i.e., a stronger variant of ABCNN-1),
with the achieved e�ectiveness only marginally below the e�ective-
ness of the PairwiseRank model. In most cases, we found that the
Combined Model works the best when the a�ention mechanism is
used together without dropout. We conjecture that in this case the
a�entional CNN model works di�erently to the data, as external
features on their own tend to �t certain aspects well enough.

Based on these results, we conclude that, for answer sentence
selection, combining the proposed external features into a con-
volutional neural architecture has a bene�t of improving overall
modeling e�ectiveness. �is improvement is evident even when the
neural architecture is slightly altered to perform advanced neural
functions such as a�ention mechanism or dropout. �e evidence
is that the highly tuned convolutional neural architecture failed to
model certain aspects in the data, which can be captured with a set
of simple features. �is points to a limitation of neural network
methodology previously not mentioned in research on question
answering.

4 RELATEDWORK
�ere is a rich body of work in question answering focused on
answer sentence selection [7, 8, 11, 12, 14, 15, 17–19]. Most of these
e�orts address the architectural issues in neural network models.
Yu et al. [19] utilize a CNN architecture to model question-answer
pairs, and this approach was taken by Yang et al [17] and Severyn
and Moschi�i [8], who later expanded the network architecture
into a bi-CNN model. Wang et al. [14] decomposed vectors into
similar/dissimilar components and used a two-channel CNN to
capture the signals. �e a�ention mechanism was investigated
in Yin et al. [18] and Yang et al. [15]. He and Lin [4] used a Bidi-
rectional LSTM to model the context of input sentences. Rao et
al. [7] proposed a pairwise ranking method that uses two bi-CNN
architectures to perform sentence-level pairwise ranking.

Feature engineering has been a popular methodology for mod-
eling question-answer structure, and is still actively used in non-
factoid question answering or answer re-ranking [10, 16]. One
commonality between these specialized tasks is a focus on retriev-
ing or ranking passage-level answers [6]. Surdeanu et al. [10]
proposed using a translation model to capture the mapping be-
tween the high-level linguistic representations of the question and
the answer. Yang et al. [16] proposed using query matching, seman-
tic, and context features to select answer sentences for non-factoid
questions.

5 CONCLUSIONS
We provide empirical evidence to support the use of conventional
features in deep learning models on the task of answer sentence
selection. We show that a convolutional neural network model ben-
e�ts from a group of commonly used text features and outperforms
the best published result on a commonly used question answering
benchmark. �e fact that neural networks can still bene�t from
these conventional features may point to new possibilities in the
evolution of new neural architectures. In future work, we will seek
to expand this analysis to other neural architectures, such as LSTM-
CNN or recurrent neural networks, and other question answering
benchmarks that are more recent and larger.
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