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ABSTRACT

A fundamentally important role of the Web economy is Online

Service Allocation (OSA) from producers to consumers, such as

product allocation in E-commerce, job allocation in freelancing

platforms, and driver resource allocation in P2P riding services.

Since users have the freedom to choose, such allocations are not

provided in a forced manner, but usually in forms of personalized

recommendation, where users have the right to refuse.

Current recommendation approaches mostly provide allocations

to match the preference of each individual user, in stead of treating

the Web application as a whole economic system – where users

therein are mutually correlated on the allocations. �is lack of

global view leads to Pareto inefficiency – that we can actually im-

prove the recommendations by be�ering some users while not

hurting the others, which means that the system did not achieve

its best possible allocation. �is problem is especially severe when

the total amount of each resource is limited, so that its allocation

to one (set of) user means that other users are le� out.

In this paper, we propose Pareto Efficient Recommendation (PER)

– that the system provides the best possible (i.e., Pareto optimal)

recommendations, where no user can gain further benefits with-

out hurting the others. To this end, we propose a Multi-Objective

Optimization (MOO) framework to maximize the surplus of each

user simultaneously, and provide recommendations based on the

resulting Pareto optima. To benefit the many existing recommenda-

tion algorithms, we further propose a Pareto Improvement Process

(PIP) to turn their recommendations into Pareto efficient ones. Ex-

periments on real-world datasets verify that PIP improves existing

algorithms on recommendation performance and consumer surplus,

while the direct PER approach gains the best performance on both

aspects.
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1 INTRODUCTION

With the trending of human activities shi�ing from offline to online,

the Web has turned into a whole unified economic system just like

our physical world, where users can accomplish various types of

daily tasks conveniently.

Like our real-world economic system that has been drawing the

a�ention of economists for centuries, an important functionality

of the Web is Online Service Allocation (OSA), which distributes

online services from producers to consumers at the speed of internet.

For example, E-commerce systems like Amazon distribute normal

goods from retailers to users, while house sharing applications like

Airbnb distribute housing facilities from hosts to guests.

Because users are granted by law of the freedom to choose, en-

forced online service allocation is not favorable. As a result, such

an allocation process is usually conducted implicitly by personal-

ized recommendation [38], which “suggests” the users to choose

particular services.

Since the beginning of modern economics, economists have been

taking care of the efficiency of economic systems [15]. �e key

insight is Pareto efficiency, named a�er economist Vilfredo Pareto

(1906) [33] – one of the pioneers of microeconomics, who is also

famous for his “80/20 rule” derived from this concept. Pareto ef-

ficiency claims that an efficient system should be one in such an

optimal status – that no one can gain further benefits without hurt-

ing the others. If a system is not Pareto efficient, we can promote

it by Pareto improvements – to increase the benefits of some users

while not decreasing the others’ – until the system is efficient.

Pareto efficiency is widely considered not only in economic anal-

ysis [13], but in various engineering tasks, e.g., electric power distri-

bution [48], network bandwidth allocation [51], and task scheduling

in cloud computing systems [46], etc.

However, though as a major form of service allocation on the

Web, current recommender systems seldom consider whether the al-

locations are Pareto efficient or not in an economic sense. Basically,

both the content-based [34] and Collaborative Filtering (CF)-based

[12, 20] approaches a�empt to maximize the degree that user pref-

erences are matched by the recommended items [38], rather than

viewing the Web economy as a whole, where the benefits of dif-

ferent users can be mutually correlated. �is results in the Pareto

inefficiency of the recommendations – that the system is not suffi-

ciently optimized to reach the best status, so that it is still possible

to benefit the experience of some users without hurting the others.

In this work, we propose Pareto Efficient Recommendation (PER)

for optimal online service allocation. With solid economic theories

and real-world user behavior records, we estimate the per-user util-

ity and surplus on each item to measure the user benefits. Based on

this, we propose a Multi-Objective Optimization (MOO) framework

to maximize the user benefits jointly, so as to find the Pareto optimal

solution for efficient service allocation among users. �is allocation
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can thus be adopted to provide personalized recommendations in

recommender systems.

Over the years, many effective recommendation algorithms have

been developed and they are widely applied to practical systems.

Although their provided recommendation results may not be Pareto

efficient, taking advantage of the many existing algorithms can help

to reduce the complexity in practical applications. �erefore, we

further propose a Pareto Improvement Process (PIP) on top of any

given recommendation algorithm, which promotes the recommen-

dation results to Pareto efficient ones by Pareto improvements.

Results on real-world E-commerce datasets show that, PIP in-

creases both the recommendation performance and allocation ef-

ficiency of traditional recommendation algorithms, while a direct

PER approach gains the best performance on both aspects.

In the rest of the paper, Section 2 introduces some basic concepts

for the work. In Section 3 we propose our Pareto efficient recom-

mendation framework based on MOO, and in Section 4, we further

provide the Pareto improvement process to boost the efficiency of

existing recommendation algorithms. Some discussions are made

in Section 5, with experimental results provided in Section 6. We

present the related work in Section 7 and conclusions in Section 8.

2 BASIC CONCEPTS AND DEFINITIONS

In this section, we formally introduce the key concepts of utility,

surplus, and Pareto efficiency from economics, which will form the

theoretical basis for our framework, and the notations are to be

used throughout the following text.

2.1 Utility and Surplus

In economics, utility measures one’s satisfaction over one or a

portfolio of goods/services. It is the basic concept that serves as

the underpinning of the rational choice theory [11].

Utility U (q) is usually a function of the consumption quantity

q, and is inherently governed by the Law Of Diminishing Marginal

Utility [39], which states that as a person increases the consumption

of a product, there is a decline in the marginal utility that he derives

from consuming each additional unit of the product, e.g., when

forcing a person who is full to consume an additional bread. �is

givesU ′′(q) < 0, while the marginal utilityU ′(q) > 0.

Economists have introduced various forms for utility, for exam-

ple, the most representative King-Plosser-Rebelo (KPR) utility:

U (q) = a ln(1 + q) (1)

where the parameter a measures the risk aversion as well as the

overall li� of the curve.

Based on the theories of rational choice, a consumer would

purchase a product/service only if she thinks that the utility she

gains from the product is higher than the price that she has to pay,

and surplus measures the extra amount of satisfaction she gains

beyond the paid price in the transaction. Let P be the per-product

price, thus the surplus S (q) is:

S (q) = U (q) − P · q (2)

In modern economics, the concept of surplus has solid theoretical

origins from the supply-demand economic analysis framework

[5, 6], and it is adopted to quantify the benefits of consumers in

economic systems.

2.2 Multi-Objective Optimization

Multi-Objective Optimization (MOO) originally grew out of three

areas [29]: economic equilibrium and welfare theories, game theory,

and pure mathematics. �emathematical and economic approaches

to MOO were united with the inception of game theory by Borel in

1921 [45]. �e general MOO problem is posed as follows:

maximize
x

F(x) = [F1 (x), F2 (x), · · · , Fk (x)]
⊺

s .t . дr (x) ≤ 0, r = 1, 2, · · · , s

hl (x) = 0, l = 1, 2, · · · , e

(3)

where k is the number of objective functions, s is the number of

inequality constraints, and e is the number of equality constraints.

x ∈ Rn is a vector of decision variables, and F(x) ∈ Rk is a vector of

objective functions Fi (x): R
n → R. All vectors are column vectors,

and any comparison (≤, ≥, etc.) of vectors applies to each element.

�e objective functions Fi (x) in multi-objective optimization

problems are usually mutually correlated, so that the increase on

one objective may lead to the decease of another. As a result, given

an MOO problem, we are usually interested in its Pareto efficient

solutions, which are introduced in the following subsection.

It is worthwhile to note that, as a frequently used optimization

formulation, MOO has been applied to plenty of research in recom-

mender systems to jointly maximize mutually unaligned objectives

[1, 2, 28, 32, 36, 37, 41, 49], e.g., accuracy, novelty, and diversity. In

this work, however, we aim to quantify and maximize the consumer

surplus (welfare) with MOO directly from an economic point of

view so as to model the online economy, which is different from

the motivation of previous MOO-based research.

2.3 Pareto Efficiency and Improvement

Different from single-objective optimization, there is typically no

single global solution to an MOO problem. Usually there exist a

set of points that all fit a predetermined definition for an optimum.

�e predominant concept in defining an optimal point is Pareto

efficiency (or Pareto optimal) (Pareto 1906) [33], which is,

Definition 2.1. A point x∗ is Pareto efficient iff there does not

exist another point x, such that F(x) ≥ F(x∗) with at least one

Fi (x) > Fi (x
∗). Otherwise, x∗ is Pareto inefficient.

Definition 2.2. Pareto Frontier: �e set of all Pareto efficient

points is called the Pareto (efficient) frontier.

It would be important to note that Pareto efficiency itself does not

imply equality or fairness in an economic system. In fact, a Pareto

efficient status can be extremely unbalanced – that a few individuals

may take a great share of the benefits, while the remaining ones

possess only a small portion. As a result, we may need to take

special consideration to find the economically favorable Pareto

efficient solution to a system.

Definition 2.3. Pareto Improvement: A status from point x1 to

x2 is called a Pareto improvement iff F(x1) ≤ F(x2) with at least

one Fi (x1) < Fi (x2).

Definition 2.4. Utopia Point: A point F◦ ∈ Rk is a utopia point iff

for each i = 1, 2, · · · ,k , F◦i = maximize
x

Fi (x). �e corresponding

variable x◦i is the utopia decision variable.
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Intuitively, a Pareto improvement is an action conducted in a

system that harms no one and helps at least one person. Pareto

improvements will keep adding to the economy until it achieves

a Pareto optimum (convergence), where no more Pareto improve-

ments can be made [29].

Utopia point (or ideal point) is the most ideal solution to an MOO

problem, but in general it is una�ainable. However, it can help to

find the Pareto optimal solution to MOO.

3 PARETO EFFICIENT RECOMMENDATION

We propose our Pareto Efficient Recommendation (PER) frame-

work in this section. We first formalize the problem into an Online

Service Allocation (OSA) framework with multi-objective surplus

maximization, and further propose methods for computational esti-

mation of personalized utility and surplus with economic theories.

3.1 Problem Formalization

Suppose there existm users {u1,u2, · · · ,um } in an online economic

system, and there aren items {v1,v2, · · · ,vn } to be allocated among

the users, where the maximum quantity of each item consists the

quantity vector q = [q1,q2, · · · ,qn]
⊺ . In the following, we use

1 ≤ i ≤ m and 1 ≤ j ≤ n to index the users and items, respectively.

�e Online Service Allocation (OSA) [53] problem aims to find

an allocation matrix Q = [Qi j ]m×n , where Qi j ≥ 0 is the quantity

that user ui is provided with item vj , under the maximum quantity

constraint of
∑m
i=1Qi j ≤ qj , ∀j.

Pareto efficient recommendation thus a�empts to provide rec-

ommendations according to the Pareto efficient allocation of the

online services in terms of per-user benefits (i.e., surplus). Let Qi

be the allocation vector for user ui so that Q = [Q1Q2 · · ·Qm]⊺ ,

and let Si (Qi ) be the surplus that user ui achieves from his/her

allocated items. We aim to solve the following MOO problem,

maximize
Q=[Qi j ]m×n

S(Q ) = [S1 (Q1), S2 (Q2), · · · , Sm (Qm )]⊺

s .t . Qi ≥ 0, i = 1, 2, · · · ,m

m
∑

i=1

Qi j ≤ qj , j = 1, 2, · · · ,n

(4)

which maximizes the surpluses of different users jointly. �e model

produces Pareto efficient allocations on user benefits, which are

taken to make system decisions.

3.2 Model Specification

�e key to specifying the mathematical form of Eq.(4) is to calculate

the per-user surplus Si (Qi ) given an arbitrary allocation matrix Qi .

Let Pj be the price of item vj , which is pre-known, we have,

Si (Qi ) =

n
∑

j=1

Si (Qi j ) =

n
∑

j=1

(

Ui j (Qi j ) − Pj ·Qi j

)

(5)

where Ui j (·) is the utility of user ui on item vj . It is important to

notice that the utility functionUi j (·) is personalized – that different

users may gain different utilities even on the same quantity of the

same item. �is is because of the different preferences of users,

namely, a product favored by this user may not be quite favored

by another one, and this nature serves as the inherent driving

power for personalized recommendation. In this work, we estimate

the personalized utility Ui j (q) per user-item level to represent the

personalized user preference on each item. Specifically,

Ui j (q) = ai j ln(1 + q)

� (α + βi + γj + u
⊺

i vj ) ln(1 + q)
(6)

where the risk aversion parameter ai j is re-parameterized in the

spirit of collaborative filtering: α , βi ,γj are the global, user, and

item offsets; and ui , vj ∈ R
k
+
are the user and item representation

vectors, respectively.

As a result, the calculation of per-user surplus boils down to the

estimation of per user-item utility functionUi j (q).

3.3 Personalized Utility Estimation

Similar to [53], we conduct personalized utility estimation based

on the observed user purchasing records. Let qi j be the quantity

that user ui purchased item vj , and Si j (qi j ) = Ui j (qi j ) − Pjqi j be

the surplus that user ui gains from this purchase. �en the Law of

Zero Surplus for the Last Unit [14] in economics states that,

∆Si j (qi j ) = Si j (qi j ) − Si j (qi j − 1) ≥ 0

∆Si j (qi j + 1) = Si j (qi j + 1) − Si j (qi j ) < 0
(7)

Intuitively, it means that the reason a user purchases a quantity of

qi j on an item, is that he/she can still obtain increased surplus with

the last unit, but even a single more unit of purchase will decease

the surplus. With this, we maximize the following log-likelihood

of observing the whole purchasing records dataset D,

maximize
Θ

logp (D)

=

m
∑

i=1

n
∑

j=1

Ii j

(

Pr
(

∆Si j (qi j ) ≥ 0
)

Pr
(

∆Si j (qi j + 1) < 0
)

)

− λ‖Ω‖2F

(8)

where Ω = {α , βi ,γj , ui , vj }
m n
i=1j=1 is the parameter set, Ii j is an

indicator whose value is 1 when user ui purchased item vj in the

dataset and 0 otherwise, λ > 0 is the regularization coefficient,

and ui , vj ∈ R
k
+
are non-negative. We adopt the commonly used

sigmoid function to model the probabilities:

Pr
(

∆Si j (qi j ) ≥ 0
)

=

1

1 + exp(−∆Si j (qi j ))

Pr
(

∆Si j (qi j + 1) < 0
)

= 1 − Pr
(

∆Si j (qi j + 1) ≥ 0
)

(9)

We optimize Eq.(8) by Stochastic Gradient Descent (SGD) to get

the optimal parameter set Θ, thus obtain the per user-item utility

functionsUi j (q) = (α + βi + γj + u
⊺

i vj ) ln(1 + q).

3.4 MOO Scalarization

Given utility functions Ui j (q), prices Pj , and quantity constraints

q = [q1,q2, · · · ,qn]
⊺ , the MOO function in Eq.(4) is determined

only on the allocation matrix Q = [Qi j ]m×n .

Since its existence, researchers have proposed various approaches

to multi-objective optimization, and they can be generally classified

into a priori, a posteriori and interactive methods, which involve the

preference information from the decision maker priorly, posteriorly,

or interactively during the model learning process [29].

In this work, we adopt the a priori approach because we aim

at an offline learning algorithm for Pareto efficient allocation. To
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do so, we adopt the scalarization method to transform the multi-

objective problem into a single-objective one. When scalarization

is done neatly, Pareto optimality of the solutions obtained can be

guaranteed [30]. It is proven that minimizing the following function

is necessary and sufficient for Pareto optimality of Eq.(4) [29, 50]:

minimize
Q=[Qi j ]m×n

S (Q ) =

m
∑

i=1

wi

(

Si (Qi ) − S
◦
i

)2

s .t . Qi ≥ 0,

m
∑

i=1

Qi j ≤ qj , ∀i, j

(10)

where w1,w2, · · · ,wm ≥ 0 are the weights set by the decision

maker, whose relative values reflect the decision maker’s preference

on the importance of each user. Mathematically, different choices

of weights will result in different Pareto efficient optima, although

many of them can be extremely unbalanced. Because we treat the

benefits of each user equally and do not pose any special preference

on specific users, we adopt identical weightswi = 1 in this work.

S◦i is the Utopia point for user ui , which is determined by the

maximum possible surplus of the user. We already have:

Si (Qi j ) = Ui j (Qi j ) − PjQi j = ai j ln(1 +Qi j ) − PjQi j (11)

Let derivative be zero with respect to global quantity limits:

S ′(Qi j ) =
ai j

1 +Qi j
− Pj = 0, w .r .t . Qi j ≤ qj (12)

We thus have the utopia decision variable Q◦i j and utopia point S◦i :

Q◦i j = min

(

ai j

Pj
− 1, qj

)

, ∀j = 1, 2, · · · , n

S◦i =

n
∑

j=1

(

Ui j (Q
◦
i j ) − Pj ·Q

◦
i j

)

, ∀i = 1, 2, · · · ,m

(13)

With these components, we plug Eq.(5)(6)(13) and wi = 1 into

Eq.(10) for model specification.

3.5 Model Learning

We transformEq.(10) into a non-constrained problemwith penalties,

so that it can be conveniently solved with gradient optimization.

More concretely, we transform the two constraints into penalty

terms added to the objective to penalize infeasible solutions:

minimize
Q=[Qi j ]m×n

L(Q ) =
∑

i

(

∑

j

(

ai j ln(1 +Qi j ) − Pj ·Qi j

)

− S◦i

)2

−λ1

∑

i, j

log(Qi j ) − λ2

∑

j

min
{

0, qj −
∑

i

Qi j

}
(14)

where the second term is the log-barrier function that prevents

the elements in Q from approaching the nonnegative cone, and

the last term is a hinge-loss that penalizes an allocation that vi-

olates the quantity constraint. One may also use the hinge-loss

−λ1
∑

i, j min{0,Qi j } for Q ≥ 0, but this would give sparse optima,

which are not favored in this work because we rely on the result

allocation matrix Q to rank all the items for each user.

In Eq.(14), λ1, λ2 ∈ R+ determine the tradeoff between the ac-

curacy of the approximation procedure and the feasibility of the

solution. With λ1 and λ2 → ∞, any violation of the constraints

will be greatly penalized and the solution is guaranteed to be in the

feasible region. However, the objective term maybe dominated by

these two penalty terms, causing the solution to be inaccurate.

Algorithm 1: Pareto Efficient Allocation

Input: Initial penalty parameters λ
(0)
1 , λ

(0)
2 > 0, step factor

µ > 1, initial learning rate γ (0) < 1, threshold

0 < ϵ1, ϵ2 ≪ 1, dimension k for latent factors u′i , v
′
j

Output: Pareto efficient allocation matrix Q∗

1 Initialize Θ
(0)
∗ = {α

′, β ′i ,γ
′
j , u
′
i , v
′
j }
m n
i=1j=1 randomly;

2 repeat

3 Θ
(t )
0 ← Θ

(t−1)
∗ ;

4 repeat

5 Compute the gradient ∇ΘL(Θ
(t )

l
) by Eq.(18);

6 Θ
(t )

l+1
← Θ

(t )

l
− γ (t )∇ΘL(Θ

(t )

l
);

7 until ‖Θ
(t )

l+1
− Θ

(t )

l
‖ < ϵ1;

8 Θ
(t )
∗ ← Θ

(t )
L

;

9 λ
(t+1)
1 ← µλ

(t )
1 , λ

(t+1)
2 ← µλ

(t )
2 ,γ

(t+1) ← γ (t )/µ;

10 until λ
(t )
1 > 1/ϵ2 and λ

(t )
2 > 1/ϵ2;

11 return Q∗ ← Q (Θ
(t )
∗ );

To combine the best of two worlds, we propose a sequential

minimization framework: for each fixed pair (λ1, λ2), we optimize

Eq.(14) to find a local minimum solution Q (λ1, λ2) which depends

on the current (λ1, λ2), then we increase the parameters (λ1, λ2)

by a factor µ > 1 and restart the optimization with Q (λ1, λ2) as

the initial point. To increase the approximation accuracy when λ1
and λ2 get larger, we increase the number of steps per iteration,

ensuring that the penalty terms will vanish as the solution becomes

feasible, and the objective term will get fully optimized. �e process

is repeated until the current solution is a stationary point.

To apply the sequential minimization framework, we derive the

gradient for Eq.(14), where ∇1
Q
,∇2

Q
,∇3

Q
denote the gradient for

each of the three components:

∇1Q =


2
(

∑

j

Si (Qi j ) − S
◦
i

) ( ai j

1 +Qi j
− Pj

)

m×n
∇2Q = −λ1

[
1

Qi j

]

m×n

, ∇3Q = −λ2
(

1m · Iq⊺−1⊺mQ<0

)

(15)

where 1m is a column vector of 1’s, and Iq⊺−1⊺mQ<0 is the indicator

function Ix<0 applied to every element of the vector q⊺ − 1
⊺

mQ . As

a result, the gradient of Eq.(14) will be:

∇QL(Q ) = ∇1Q + ∇
2
Q + ∇

3
Q (16)

However, the huge number of users and items in practical sys-

tems makes it computationally infeasible to directly gradient on the

allocation matrixQ as a whole. As a result, we still re-parameterize

the allocationmatrix according to the spirit of collaborative filtering.

Specifically, let:

Qi j = α ′ + β ′i + γ
′
j + u

′⊺

i v′j (17)

whereΘ = {α ′, β ′i ,γ
′
j , u
′
i , v
′
j }
m n
i=1j=1 is the parameter set, and u′i , v

′
j ∈

R
k
+
are latent factorization parameters. As a result, Q becomes an

intermediate parameter and the gradient on the low-dimensional
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parameters Θ is:

∇ΘL(Θ) = ∇QL(Q ) · ∇ΘQ = (∇1Q + ∇
2
Q + ∇

3
Q ) · ∇ΘQ (18)

Once we obtain a closed form solution to compute the gradients,

we can apply various kinds of unconstrained minimization algo-

rithms, e.g., gradient descent, conjugate gradient or L-BFGS [3].

For illustrative purposes, we provide an algorithm using gradient

descent in Algorithms 1. Assuming the algorithm will perform τ

iterations in each inner loop, the time complexity of Algorithm 1 is

O (τmn logµ (
1
λϵ

)).

With the Pareto efficient allocation matrix Q∗ produced by the

algorithm, we can thus provide the personalized recommendation

list for each user ui by ranking the items vj in descending order of

the quantity Q∗i j allocated to him/her.

4 PARETO IMPROVEMENT PROCESS

Researchers have development many successful personalized rec-

ommendation algorithms, which are widely applied to various prac-

tical systems. Taking advantages of their insightful designs can be

beneficial to both the practitioners and recommendation results.

Although they do not primarily consider Pareto efficiency of

the recommendations, their results can be promoted into Pareto

efficient ones, which improvements the user benefits meanwhile

keeps a satisfactory recommendation performance. To this end, we

propose a Pareto Improvement Process (PIP) in this section.

We first construct the replication allocation matrix Q̂ from the

recommendation results of a given recommendation algorithm. Let

the top-K recommendation list for user ui given by the algorithm

be Ri = {vi1 ,vi2 , · · · ,viK }, we construct the corresponding recom-

mendation vector ri = [Ivj ∈Ri ]n×1, where the j-th element is 1 if

the j-th item is in the recommendation list, and 0 otherwise. With

the vectors for all users, we have Q̂ = [r1r2 · · · rm]⊺ .

Note that Q̂ may not satisfy the quantity constraint q = [q1,q2 · · ·qn]
⊺ .

Tomake it feasible, we examine each column of Q̂ , and if
∑m
i=1 Q̂i j >

qj , we only retain a total number qj of 1’s in that column. �ese 1’s

correspond to the users in whose recommendation list Ri the item

vj is ranked in higher position, i.e., we allocate the limited number

of item vj to those users who be�er prefer the item. To help with a

clearer understanding, we present the procedure in Algorithm 2.

Based on the replication allocation matrix Q̂ , we calculate the

current benefit Ŝi = Si (Q̂i ) for each user ui , and further solve the

following Pareto improvement problem:

maximize
Q=[Qi j ]m×n

S(Q ) = [S1 (Q1), S2 (Q2), · · · , Sm (Qm )]⊺

s .t . Qi ≥ 0,

m
∑

i=1

Qi j ≤ qj , Si (Qi ) ≥ Ŝi , ∀i, j
(19)

where the third constraint is incorporated to guarantee Pareto

improvements.

Similarly, Eq.(19) can be scalarized and further converted into

the following non-constrained optimization problem:

minimize
Q=[Qi j ]m×n

L̂(Q ) =
∑

i

(

Si (Qi ) − S
◦
i

)2
− λ1

∑

i, j

log(Qi j )

− λ2

∑

j

min
{

0,qj −
∑

i

Qi j

}

− λ3

∑

j

min
{
0, Si (Qi ) − Ŝi

} (20)

Algorithm 2: Replication Matrix Construction

Input: Top-K recommendation list

Ri = {vi1 ,vi2 , · · · ,viK } for each user ui , quantity

constraint q = [q1,q2, · · · ,qn]
⊺

Output: Replicate allocation matrix Q̂

1 for each user ui (i ← 1 tom) do

2 ri ← [Ivj ∈Ri ]n×1; //identification vector

3 pi ← [∞]n×1; //ranking position vector

4 for each item vj (j ← 1 to n) do

5 if vj ∈ Ri and vj ≡ vik then

6 pi j ← k ; //record the ranking position

7 Q̂ ← [r1, r2, · · · , rm]⊺ ;

8 for each item vj (j ← 1 to n) do

9 if
∑m
i=1 Q̂i j > qj then

10 Rank users (ui ’s) in ascending order of pi j ;

11 Keep Q̂i j = 1 for top-qj users and change the

remaining to 0;

12 return Q̂ ;

where the gradient for the last term is:

∇4Q = −λ3
(

I
S(Q )−Ŝ<0 · 1

⊺

n

)

(21)

With the gradients∇Q L̂(Q ) = ∇1
Q
+∇2

Q
+∇3

Q
+∇4

Q
and∇ΘL̂(Θ) =

∇Q L̂(Q ) · ∇ΘQ , we can still adopt Algorithm 1 for model learning,

and take the output Pareto efficient allocation matrix for personal-

ized recommendation.

5 DISCUSSIONS

We further discuss some of the properties of the Pareto efficient

recommendation framework and Pareto improvement process.

We can see that when qj = ∞ (∀j ) in Eq.(4), the quantity con-

straint components in Eq.(10)(14) (19)(20) all vanish, and ∇3
Q
= 0

in Eq.(15). As a result, the model learning process automatically

turns into a non-constrained one. Besides, the surplus Si (Qi ) that

each user achieves from an allocation are no longer mutually corre-

lated in this case, thus the Pareto efficient model learning actually

maximizes the surplus of each user independently, and reaches the

utopia points. As a result, the quantity constraints (i.e., limited

resource allocation) serve as the critical component to bridge the

relationship of different users, because the allocation of an item to

one user may imply that other users are neglected, which is similar

to our physical economic world.

Except for the consumer surplus (i.e., utility beyond price: U (q)−

Pq) that we have considered in this work, economists have also

studied producer surplus, i.e., price beyond cost: Pq −cq, where c is

the per-item cost. In this work, we do not incorporate producer sur-

plus into consideration for total surplus maximization (as [53]) for

two reasons, 1) the producer surplus will mathematically be a fixed

value when all items are allocated out, and 2) the price component

(Pq) offsets when adding the producer and consumer surplus for

total surplus maximization, as a result, some users may be sacrificed

for the maximization of collective interest (total surplus), which is

philosophically not favored. In this work, however, we guarantee
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that each user benefits and no one has to sacrifice for the whole

economic system.

As stated before, the weight parameterswi in Eq.(10) determine

the distribution of benefits among users, and different choices ofwi

lead to different Pareto efficient allocations. Although we choose

to treat users equally by se�ing identical wi ’s in this work, we

can actually control the distribution of benefits among different

users with different weights, so as to achieve targeted (but still

Pareto efficient) allocations for specific business intelligence goals

in real-world systems.

6 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the

performance of both the Pareto Efficient Recommendation (PER)

and Pareto Improvement Process (PIP), in terms of recommendation

performance, economic efficiency, and Pareto efficiency.

6.1 Dataset Description

We take the user purchasing records dataset from Shop.com for ex-

periments, because two of the most important information sources

needed in our framework are the price of items and quantity of pur-

chasing, which are absent in many of the other datasets. To avoid

the problem of cold-start [24, 52] so as to focus on our key research

target of Pareto efficient recommendation, we select those users

and items of at least five purchasing records, which is a frequently

adopted pre-processing method in previous work [23, 24, 47]. Some

statistics of our dataset are summarized in Table 1.

Table 1: Statistics of the Shop.com dataset

#Consumers #Products #Transactions Density Train/Test

34,099 42,691 400,215 0.03% 75%/25%

For experimental purpose, we randomly select 75% of the trans-

actions from each user to construct the training set, and adopt the

remaining transactions as testing set for evaluation. �is amounts

to around 100k transactions from 34k users towards 30k items in

the testing set.

6.2 Experimental Setup

A�er careful parameter selection, we set the initial penalty pa-

rameter λ
(0)
1 = λ

(0)
2 = 0.1, step factor µ = 2, initial learning rate

γ (0) = 0.1, threshold ϵ1 = ϵ2 = 0.1, and dimension of latent factors

k = 20 in Algorithm 1. In the experiments, we aim to provide and

evaluate top-N recommendation lists for users, where N runs from

1 to 50. As a result, we set the length of recommendation listK = 50

when constructing the replication allocation matrix in Algorithm 2,

so that the baselines get fair (or even be�er) treatment.

When estimating the personalized utility function in Eq.(8), we

set λ = 0.05 and the dimension of representation vectors ui , vj ∈

R
k
+
as k = 20, because we find that 20 factors are sufficiently enough

to stable the model performance.

We take the following representative and state-of-the-art recom-

mendation algorithms for performance comparison:

• NMF: Non-negativeMatrix Factoration [22], which is a repre-

sentative and one of the most frequently used matrix factorization

approach for personalized recommendation. To apply, we construct

the user-item purchasing quantity sparse matrix and predict the

missing values, based on which to provide personalized recommen-

dation list for each user in descending order of the predictions.

• BPRMF: Bayesian Personalized Ranking withMatrix Factori-

zation [35] that is one of the state-of-the-art approaches for ranking-

based recommendation. In implementation, we conduct balanced

negative sampling on un-purchased items for model learning.

• TSM: Total Surplus Maximization [53] approach that maxi-

mizes the total (i.e., consumer plus producer) surplus of an economic

system for service allocation and recommendation. It is a state-of-

the-art economic surplus-based approach for recommendation.

For each approach we carefully tune the parameters to achieve

the best performance. In NMF and BPRMF, we select 20 factors

with regularization coefficient λ = 0.1, and for TSM we also use 20

factors and use λ = 0.05,η = 5 for regularization. In the following,

we use PER to represent our Pareto Efficient Recommendation

approach proposed in this work. Besides, we also apply our Pareto

Improvement Process (PIP) on three of the baselines for evaluation,

which are denoted as PIP-NMF, PIP-BPRMF, and PIP-TSM in the

following, respectively.

We adopt different evaluation metics for different experimental

tasks, which will be exposited in detail in each of the following

subsections.

6.3 Recommendation Performance

We first evaluate the performance on personalized recommendation

for each approach. To do so, we construct top-N recommendation

list for each user in the testing set based on each algorithm, and

take the Conversion-Rate@N (CR@N) for evaluation.

For a set of testing users and the top-N recommendation list for

each of them, CR@N is the percentage of lists that ‘hit’ the purchase

records in the testing set of the target user. In our experiment, N

runs from 1 to 50 with a step of 5. For each user in the testing set,

there are as many as 30k candidate products for recommendation,

and all the candidate products are present in the training dataset.

For computational efficiency, we randomly select 1000 users to

evaluate average CR at each time, and the CR performance of 30

testing rounds are averaged to provide the final evaluation results.

Figure 1 shows the experimental results of each algorithm, and

more specific numbers on typical choices of N are shown in Table 2.

We see that our PER approach generally gains be�er performance

than traditional algorithms (NMF and BPRMF). On considering that

the key different of PER from previous algorithms is to model user

preferences with economic basis (personalized utility and surplus

integrating the consideration of price and quantity), this implies the

effectiveness of principled economic basis in business intelligence.

Another observation is that PER also outperforms TSM, which

is interesting because the allocation results produced by TSM is

in fact also a Pareto efficient solution, while the difference is that

TSM takes producer surplus into consideration for allocation of

benefits. �is observation verifies the economic intuition that pro-

ducers and consumers have conflicts of interest in the allocation

of total internet welfare (surplus), so that each party has to “steal”

surplus from the other side so as to benefit themselves. As a result,

maximizing the benefits of consumers alone (instead of together

with producers) helps consumers to gain be�er experience.
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single item can not be recommended in an unlimited manner, and

in this way, the Web economy is modeled as a whole system instead

of a set of isolated items.

In this work, we propose to boost the Pareto Efficiency of Web

allocations based on principled and widely-accepted economic con-

cepts and theories, which, to the best of our knowledge, is the first

time in the context of web-based recommendation systems.

8 CONCLUSIONS AND FUTURE WORK

Existing approaches of recommender systems focus on providing

targeted recommendations to match the preference of each indi-

vidual user. Although many Web applications have turned into

intact online economic systems, li�le consideration is put on the

essential problem of online economic efficiency – that why and

how Web-based systems can achieve efficient service allocations.

�is paper a�empts to answer these principled questions based

on established economic theories melt with solid data-driven algo-

rithmic approaches. To do so, we first formalized the online service

allocation problem that serves as the basic functionality of most

Web-based systems, and further proposed algorithms to measure

the user benefits in terms of utility and surplus. Based on this, we

proposed Pareto efficient recommendation that a�empts to find the

Pareto optimal service allocation of the system with consideration

of mutual correlations among users. To benefit the many existing

personalized recommendation algorithms, we further proposed the

Pareto improvement process to re-optimize their recommendation re-

sults into Pareto efficient ones. Experimental results on real-world

industry data verified the proposed approaches in terms of recom-

mendation performance, consumer surplus, and Pareto efficiency.

�is is our first step towards an economic efficient Web, and

there is much room for further improvements. In the future, we

will study different utility functions in measuring consumer surplus.

We can compute other Pareto efficient solutions beyond the bal-

anced one to get the Pareto frontier and investigate their differences

and relations. More importantly, our basic philosophy to promote

Web efficiency is not restricted to e-commerce, and it can well be

generalized to various other Web services, which is promising to

both interdisciplinary research and practical applications.
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